Python实战实例代码-网络爬虫-数据分析-机器学习-图像处理

Python实战实例代码-网络爬虫-数据分析-机器学习-图像处理

  • Python实战实例代码
    • 1. 网络爬虫
      • 1.1 爬取网页数据
      • 1.2 爬取图片
      • 1.3 爬取动态数据(使用Selenium)
    • 2. 数据分析
      • 2.1 数据清洗
      • 2.2 数据变换
      • 2.3 数据聚合
    • 3. 机器学习
      • 3.1 线性回归
      • 3.2 随机森林
      • 3.3 K-Means聚类
    • 4. 图像处理
      • 4.1 图像读取和显示
      • 4.2 图像缩放
      • 4.3 图像边缘检测
    • 总结
  • Python学习的相关博文及链接

Python实战实例代码

本篇文章将为您提供Python实战实例代码,包括网络爬虫、数据分析、机器学习、图像处理等多个领域。代码实例详附注释和解释,希望对您的学习和应用有所帮助。

1. 网络爬虫

在这里插入图片描述

1.1 爬取网页数据

import requestsurl = "https://www.baidu.com"
response = requests.get(url)if response.status_code == 200:print(response.content.decode('utf-8'))

1.2 爬取图片

import requestsurl = "http://www.example.com/image.jpg"
response = requests.get(url)if response.status_code == 200:with open("image.jpg", "wb") as f:f.write(response.content)

1.3 爬取动态数据(使用Selenium)

from selenium import webdriverbrowser = webdriver.Chrome()
browser.get("https://www.baidu.com")input = browser.find_element_by_id("kw")
input.send_keys("Python")
input.submit()data = browser.find_element_by_id("content_left")
print(data.text)

2. 数据分析

在这里插入图片描述

2.1 数据清洗

import pandas as pddata = pd.read_csv('data.csv')
data = data.dropna() # 删除缺失值
data = data.drop_duplicates() # 删除重复值
data.to_csv('clean_data.csv', index=False)

2.2 数据变换

import pandas as pddata = pd.read_csv('data.csv')
data['date'] = pd.to_datetime(data['date']) # 将日期转成datetime对象
data['month'] = data['date'].dt.month # 新增月份列
data = data.drop(['date'], axis=1) # 删除原始日期列
data.to_csv('transformed_data.csv', index=False)

2.3 数据聚合

import pandas as pddata = pd.read_csv('data.csv')
grouped_data = data.groupby(['category', 'year']).sum() # 按品类、年份进行聚合grouped_data.to_csv('aggregated_data.csv')

3. 机器学习

在这里插入图片描述

3.1 线性回归

import numpy as np
from sklearn.linear_model import LinearRegressionX = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
y = np.dot(X, np.array([1, 2])) + 3
reg = LinearRegression().fit(X, y)
print(reg.coef_)
print(reg.intercept_)

3.2 随机森林

import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_splitdata = pd.read_csv('data.csv')
X = data.drop(['label'], axis=1)
y = data['label']X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)clf = RandomForestClassifier(n_estimators=100)
clf.fit(X_train, y_train)accuracy = clf.score(X_test, y_test)
print(accuracy)

3.3 K-Means聚类

import numpy as np
from sklearn.cluster import KMeansX = np.array([[1, 2], [1, 4], [1, 0],[4, 2], [4, 4], [4, 0]])
kmeans = KMeans(n_clusters=2, random_state=0).fit(X)print(kmeans.labels_)
print(kmeans.predict([[0, 0], [4, 4]]))

4. 图像处理

在这里插入图片描述

4.1 图像读取和显示

import cv2img = cv2.imread('image.jpg', cv2.IMREAD_COLOR)
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

4.2 图像缩放

import cv2img = cv2.imread('image.jpg', cv2.IMREAD_COLOR)scale_percent = 50 # 缩放比例
width = int(img.shape[1] * scale_percent / 100)
height = int(img.shape[0] * scale_percent / 100)
dim = (width, height)resized_img = cv2.resize(img, dim, interpolation=cv2.INTER_AREA)
cv2.imshow('image', resized_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

4.3 图像边缘检测

import cv2img = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)edges = cv2.Canny(img, 100, 200)cv2.imshow('image', edges)
cv2.waitKey(0)
cv2.destroyAllWindows()

总结

这篇Python实战实例代码的部分内容,涵盖了网络爬虫、数据分析、机器学习、图像处理等多个领域。这些实例代码展示了Python在实际应用中的灵活性和强大的功能。

网络爬虫部分展示了Python如何利用requests和beautifulsoup库来获取互联网上的数据,并将其存储到本地磁盘上。数据分析部分则展示了Python如何利用pandas、numpy和matplotlib等库来对数据进行分析和可视化。

机器学习部分展示了Python如何利用scikit-learn和tensorflow等库来进行数据挖掘和机器学习任务。图像处理部分展示了Python如何利用opencv等库来对图像进行处理和识别。这些实例代码不仅展示了Python在不同领域的应用,也让读者更好地理解Python代码的实现过程和技术细节。

总之,Python作为一种功能强大、易用性高、学习成本低的编程语言,无论在科学计算、数据挖掘、机器学习、web开发等领域都有广泛应用,希望更多的人能够通过学习Python来掌握这个优秀的工具,为更好地解决实际问题做出贡献。Python作为一种简洁、易学、高效的编程语言,被广泛应用于各个领域。

Python学习的相关博文及链接

学Python的漫画漫步进阶 – 第一步.历史及搭建Python开发环境

学Python的漫画漫步进阶 – 第二步.编程基础那点事

学Python的漫画漫步进阶 – 第三步.数字类型的数据

学Python的漫画漫步进阶 – 第四步.运算符

学Python的漫画漫步进阶 – 第五步.程序流程控制

学Python的漫画漫步进阶 – 第六步.容器类型的数据

学Python的漫画漫步进阶 – 第七步.字符串

学Python的漫画漫步进阶 – 第八步.函数

学Python的漫画漫步进阶 – 第九步.类与对象

学Python的漫画漫步进阶 – 第十步.异常处理

学Python的漫画漫步进阶 – 第十一步.常用的内置模块

学Python的漫画漫步进阶 – 第十二步.文件读写

学Python的漫画漫步进阶 – 第十三步.图形用户界面

学Python的漫画漫步进阶 – 第十四步.网络通信

学Python的漫画漫步进阶 – 第十五步.访问数据库

学Python的漫画漫步进阶 – 第十六步.多线程

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/140751.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构】C++实现哈希表

闭散列哈希表 哈希表的结构 在闭散列的哈希表中,哈希表每个位置除了存储所给数据之外,还应该存储该位置当前的状态,哈希表中每个位置的可能状态如下: EMPTY(无数据的空位置)。EXIST(已存储数…

Linux Day18 TCP_UDP协议及相关知识

一、网络基础概念 1.1 网络 网络是由若干结点和连接这些结点的链路组成,网络中的结点可以是计算机,交换机、 路由器等设备。 1.2 互联网 把多个网络连接起来就构成了互联网。目前最大的互联网就是因特网。 网络设备有:交换机、路由器、…

图层混合算法(一)

常见混合结果展示 图层混合后变暗 正常模式(normal) 混合色*不透明度(100%-混合色不透明度) void layerblend_normal(Mat &base,Mat &blend,Mat &dst,float opacity) {if (base.rows ! blend.rows ||base.cols ! b…

测试C#图像文本识别模块Tesseract的基本用法

微信公众号“dotNET跨平台”的文章《c#实现图片文体提取》(参考文献3)介绍了C#图像文本识别模块Tesseract,后者是tesseract-ocr(参考文献2) 的C#封装版本,目前版本为5.2,关于Tesseract的详细介绍…

使用Python+Flask/Moco框架/Fiddler搭建简单的接口Mock服务

一、Mock测试 1、介绍 mock:就是对于一些难以构造的对象,使用虚拟的技术来实现测试的过程mock测试:在测试过程中,对于某些不容易构造或者不容易获取的对象,可以用一个虚拟的对象来代替的测试方法接口mock测试&#x…

多维时序 | MATLAB实现WOA-CNN-BiLSTM-Attention多变量时间序列预测(SE注意力机制)

多维时序 | MATLAB实现WOA-CNN-BiLSTM-Attention多变量时间序列预测(SE注意力机制) 目录 多维时序 | MATLAB实现WOA-CNN-BiLSTM-Attention多变量时间序列预测(SE注意力机制)预测效果基本描述模型描述程序设计参考资料 预测效果 基…

stc8H驱动并控制三相无刷电机综合项目技术资料综合篇

stc8H驱动并控制三相无刷电机综合项目技术资料综合篇 🌿相关项目介绍《基于stc8H驱动三相无刷电机开源项目技术专题概要》 🔨停机状态,才能进入设置状态,可以设置调速模式,以及转动方向。 ✨所有的功能基本已经完成调试,目前所想到的功能基本已经都添加和实现。引脚利…

SpringSecurity 认证流程

文章目录 前言认证入口(过滤器)认证管理器认证器说明默认认证器的实现 总结 前言 通过上文了解SpringSecurity核心组件后,就可以进一步了解其认证的实现流程了。 认证入口(过滤器) 在SpringSecurity中处理认证逻辑是…

CMU15-445 format\clang-format\clang-tidy 失败

CMU15-445 format\clang-format\clang-tidy 失败 问题修改 问题 -- Setting build type to Debug as none was specified. -- Youre using Clang 14.0.0 CMake Warning at CMakeLists.txt:67 (message):BusTub/main couldnt find clang-format.CMake Warning at CMakeLists.tx…

虚幻4学习笔记(15)读档 和存档 的实现

虚幻4学习笔记 读档存档 B站UP谌嘉诚课程:https://www.bilibili.com/video/BV164411Y732 读档 添加UI蓝图 SaveGame_UMG 添加Scroll Box 修改Scrollbar Thickness滚动条厚度 15 15 勾选 is variable 添加text 读档界面 添加背景模糊 添加UI蓝图 SaveGame_Slot …

Rowset Class

本节介绍 This chapter provides an overview of Rowset class and discusses the following topics: Shortcut considerations. Rowset object declaration. Scope of a Rowset object. Rowset class built-in functions. Rowset class methods. Rowset class propertie…

计算机毕业设计 智慧养老中心管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍:✌从事软件开发10年之余,专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ 🍅文末获取源码联系🍅 👇🏻 精…

golang实现远程控制主机

文章目录 ssh原理使用golang远程下发命令使用golang远程传输文件 ssh原理 说到ssh原理个人觉得解释最全的一张图是这张华为画的 Connection establishment 这一步就是建立tcp连接 version negotiation 这一步是ssh客户端(连接者)和被ssh服务端(连接者)进行协议的交换&#xf…

字符函数和字符串函数(1)

前言 C语言中对字符和字符串的处理很是频繁,但是C语言本身是没有字符串类型的,字符串通常放在 常量字符串 中或者 字符数组 中。 字符串常量 适用于那些对它不做修改的字符串函数. 1.求字符串长度 strlen 1.1 strlen size_t strlen ( const char * s…

Windows安装cuda和cudnn教程最新版(2023年9月)

文章目录 cudacudnn cuda 查看电脑的cuda最高驱动版本(适用于N卡电脑-Nvidia) winR打开命令行,输入nvidia-smi 右上角cuda -version就是目前支持的最高cuda版本,目前是12.2 nvidia官网下载cuda 下载地址:https://d…

华为NFC设置教程(门禁卡/公交卡/校园卡等)

今天把华为NFC设置教程分享给大家 出门带门禁卡、校园卡、银行卡、身份证……东西又多,携带又麻烦,还容易搞丢,有没有一种方法可以把它们都装下?有!只要一部手机,出门不带卡包,各种证件&#x…

010_第一代软件开发(二)

第一代软件开发(二) 文章目录 第一代软件开发(二)项目介绍界面布局功能完善快照功能获取可用串口播放按键提示音 关键字: Qt、 Qml、 QSerialPort、 QPixmap、 QSoundEffect 项目介绍 欢迎来到我们的 QML & C 项目!这个项目结合了 QML&#xff…

主打低功耗物联网国产替代,纵行科技ZT1826芯片以速率和灵敏度出圈

在低功耗物联网领域,国产替代的趋势越演越烈。 9月20日,纵行科技在“IOTE 2023深圳物联网通信技术与应用高峰论坛”发表了“自主原创Advanced M-FSK调制技术助力国产替代和泛在物联”的演讲,并推出了ZT1826芯片,以“更低功耗、更…

NetSuite BOM成本查询

这是个23.2的新功能,如题所示是对BOM成本的一个查询工具,是对之前版本那个无用的“Costed Bill of Materials Inquiry”的一次救赎。 其重要的功能是: •基于BOM所使用的版本、工艺路线和成本模板,通过Break Down的方式计算一个装…