关键点检测 HRNet网络详解笔记

关键点检测 HRNet网络详解笔记

  • 0、COCO数据集百度云下载地址
  • 1、背景介绍
  • 2、HRNet网络结构
  • 3、预测结果(heatmap)的可视化
  • 3、COCO数据集中标注的17个关键点
  • 4、损失的计算
  • 5、评价准则
  • 6、数据增强
  • 7、模型训练

论文名称: Deep High-Resolution Representation Learning for Human Pose Estimation
论文下载地址:https://arxiv.org/abs/1902.09212

0、COCO数据集百度云下载地址

百度云链接: https://pan.baidu.com/s/1U3pPJ5nDluGdCtYi0njejg
提取码: x3qk 复制这段内容后打开百度网盘手机App,操作更方便哦

1、背景介绍

这篇文章是由中国科学技术大学和亚洲微软研究院在2019年共同发表的。这篇文章中的HRNet(High-Resolution Net)是针对2D人体姿态估计(Human Pose Estimation或Keypoint Detection)任务提出的,并且该网络主要是针对单一个体的姿态评估(即输入网络的图像中应该只有一个人体目标)。人体姿态估计在现今的应用场景也比较多,比如说人体行为动作识别,人机交互(比如人作出某种动作可以触发系统执行某些任务),动画制作(比如根据人体的关键点信息生成对应卡通人物的动作)等等。
在这里插入图片描述
在这里插入图片描述

2、HRNet网络结构

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

# Stage1
downsample = nn.Sequential(nn.Conv2d(64, 256, kernel_size=1, stride=1, bias=False),nn.BatchNorm2d(256, momentum=BN_MOMENTUM)
)
self.layer1 = nn.Sequential(Bottleneck(64, 64, downsample=downsample),Bottleneck(256, 64),Bottleneck(256, 64),Bottleneck(256, 64)
)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3、预测结果(heatmap)的可视化

在这里插入图片描述
在这里插入图片描述
但在原论文中,对于每个关键点并不是直接取score最大的位置(如果为了方便直接取其实也没太大影响)。在原论文的4.1章节中有提到:
光看文字其实还是不太明白,下面是源码中对应的实现,其中coords是每个关键点对应预测score最大的位置:

for n in range(coords.shape[0]):for p in range(coords.shape[1]):hm = batch_heatmaps[n][p]px = int(math.floor(coords[n][p][0] + 0.5))py = int(math.floor(coords[n][p][1] + 0.5))if 1 < px < heatmap_width-1 and 1 < py < heatmap_height-1:diff = np.array([hm[py][px+1] - hm[py][px-1],hm[py+1][px]-hm[py-1][px]])coords[n][p] += np.sign(diff) * .25

在这里插入图片描述
在这里插入图片描述

3、COCO数据集中标注的17个关键点

"kps": ["nose","left_eye","right_eye","left_ear","right_ear","left_shoulder","right_shoulder","left_elbow","right_elbow","left_wrist","right_wrist","left_hip","right_hip","left_knee","right_knee","left_ankle","right_ankle"]

最后把每个关键点绘制在原图上,就得到如下图所示的结果。
在这里插入图片描述

4、损失的计算

在论文第3章Heatmap estimation中作者说训练采用的损失就是均方误差Mean Squared Error
在这里插入图片描述
在这里插入图片描述

"kps": ["nose","left_eye","right_eye","left_ear","right_ear","left_shoulder","right_shoulder","left_elbow","right_elbow","left_wrist","right_wrist","left_hip","right_hip","left_knee","right_knee","left_ankle","right_ankle"]
"kps_weights": [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5]

5、评价准则

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

6、数据增强

在这里插入图片描述
注意输入图片比例
在这里插入图片描述

7、模型训练

在这里插入图片描述
多GPU训练指令:

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 --use_env  train_multi_GPU.py

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/141643.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Learn Prompt- Midjourney案例:网页设计

快速开始​ 用 “ web design for...” 或 “ modern web design for..” 来快速开始你的提示。 web design for a generic SaaS startup --ar 3:2否定提示-no​ 使用--no告诉 Midjourney 你不想要什么。Midjourney 的默认风格倾向于现实和详细。但这可能不适用于所有品牌。…

AI聊天ChatGPT系统源码卡密验证开源版

ChatGPT卡密验证版源码是一个基于PHP7.4和MySQL5.6的聊天AI源码&#xff0c;它不仅支持暗黑模式、反应速度极快&#xff0c;而且充值方面采用后台生成卡密方式&#xff0c;方便快捷&#xff0c;如果您有能力将其接入在线支付&#xff0c;即可进一步拓展充值方式&#xff0c;为更…

白帽学苑-内网渗测靶机训练(1)

本文对应靶机地址&#xff1a; BoredHackerBlog: Social Network ~ VulnHub 涉及知识点&#xff1a; 主机发现端口扫描服务发现路径爬取代码注入Shell脚本内网信息收集内网穿透漏洞利用密码破解本地提权攻击代码修改 将靶机导入虚拟机中&#xff0c;桥接模式&#xff0c;直接…

基于springboot会员制医疗预约服务管理信息系统springboot017

大家好✌&#xff01;我是CZ淡陌。一名专注以理论为基础实战为主的技术博主&#xff0c;将再这里为大家分享优质的实战项目&#xff0c;本人在Java毕业设计领域有多年的经验&#xff0c;陆续会更新更多优质的Java实战项目&#xff0c;希望你能有所收获&#xff0c;少走一些弯路…

Mysql编译安装和yum安装

一、msql数据库介绍 1、什么是sql sql代表结构化查询语言&#xff0c;sql是用于访问数据库的标椎化语言 sql包含三个部分 DDL数据定义语言包含定义数据库及其对象的语言&#xff0c;例如表&#xff0c;视图&#xff0c;触发器&#xff0c;存储过程等 DML数据操作语言包含允许数…

pytorch迁移学习训练图像分类

pytorch迁移学习训练图像分类 一、环境配置二、迁移学习关键代码三、完整代码四、结果对比 代码和图片等资源均来源于哔哩哔哩up主&#xff1a;同济子豪兄 讲解视频&#xff1a;Pytorch迁移学习训练自己的图像分类模型 一、环境配置 1&#xff0c;安装所需的包 pip install …

【深度学习实验】卷积神经网络(一):卷积运算及其Pytorch实现(一维卷积:窄卷积、宽卷积、等宽卷积;二维卷积)

目录 一、实验介绍 二、实验环境 1. 配置虚拟环境 2. 库版本介绍 三、实验内容 1. 一维卷积 a. 概念 b. 示例 c. 分类 窄卷积&#xff08;Narrow Convolution&#xff09; 宽卷积&#xff08;Wide Convolution&#xff09; 等宽卷积&#xff08;Same Convolution&am…

Python开发与应用实验2 | Python基础语法应用

*本文是博主对学校专业课Python各种实验的再整理与详解&#xff0c;除了代码部分和解析部分&#xff0c;一些题目还增加了拓展部分&#xff08;⭐&#xff09;。拓展部分不是实验报告中原有的内容&#xff0c;而是博主本人自己的补充&#xff0c;以方便大家额外学习、参考。 &a…

Python3 如何实现 websocket 服务?

Python 实现 websocket 服务很简单&#xff0c;有很多的三方包可以用&#xff0c;我从网上大概找到三种常用的包&#xff1a;websocket、websockets、Flask-Sockets。 但这些包很多都“年久失修”&#xff0c; 比如 websocket 在 2010 年就不维护了。 而 Flask-Sockets 也在 2…

通信协议:Uart的Verilog实现(上)

1、前言 调制解调器是主机/设备与串行数据通路之间的接口&#xff0c;以串行单比特格式发送和接收数据。它也被称为通用异步收发器(Uart, Universal Asynchronous Receiver/Transmitter)&#xff0c;这表明该设备能够接收和发送数据&#xff0c;并且发送和接收单元不同步。 本节…

递归算法讲解,深度理解递归

首先最重要的就是要说明递归思想的作用&#xff0c;在后面学习的高级数据接口&#xff0c;树和图中&#xff0c;都需要用到递归&#xff0c;即深度优先搜索&#xff0c;如果递归掌握的不好&#xff0c;后面的数据结构将举步为艰。 加油 首先看下如何下面两个方法有什么区别&a…

git revert 撤销之前的提交

git revert 用来撤销之前的提交&#xff0c;它会生成一个新的 commit id 。 输入 git revert --help 可以看到帮忙信息。 git revert commitID 不编辑新的 commit 说明 git log 找到需要撤销的 commitID &#xff0c; 然后执行 git revert commitID &#xff0c;会提示如下…

Allegro如何将丝印文字Change到任意层面操作指导

Allegro如何将丝印文字Change到任意层面操作指导 在用Allegro进行PCB设计的时候,有时需要将丝印文字change到其它层面,如下图 可以看到丝印文字是属于REFDES这个Class的 如果需要把丝印文字change层面,只支持REFDES中以下的层面中来change

入门级制作电子期刊的网站推荐

随着数字化时代的到来&#xff0c;越来越多的人开始尝试制作自己的电子期刊。如果你也是其中的一员&#xff0c;那么这篇文章可以帮助你制作电子期刊。无论是初学者还是有一定经验的制作者&#xff0c;都能快速完成高质量的电子期刊制作 小编经常使用的工具是-----FLBOOK在线制…

95 # express 二级路由的实现

上一节实现了兼容老的路由写法&#xff0c;这一节来实现二级路由 二级路由实现核心&#xff1a; 进入中间件后&#xff0c;让对应的路由系统去进行匹配操作中间件进去匹配需要删除 path&#xff0c;存起来出去时在加上 示意图&#xff1a; 代码实现如下&#xff1a; rout…

ASCII码-对照表

ASCII 1> ASCII 控制字符2> ASCII 显示字符3> 常用ASCII码3.1> 【CR】\r 回车符3.2> 【LF】\n 换行符3.3> 不同操作系统&#xff0c;文件中换行 1> ASCII 控制字符 2> ASCII 显示字符 3> 常用ASCII码 3.1> 【CR】‘\r’ 回车符 CR Carriage Re…

安装OpenSearch

title: “安装opensearch” createTime: 2021-11-30T19:13:4508:00 updateTime: 2021-11-30T19:13:4508:00 draft: false author: “name” tags: [“es”,“安装”] categories: [“OpenSearch”] description: “测试的” 说明 基于Elasticsearch7.10.2 的 opensearch-1.1.…

arcgis搭建离线地图服务WMTS

Arcgis搭建离线地图服务WMTS 发布时间&#xff1a;2021-03-04 版权&#xff1a; ARCGIS搭建离线地图服务器&#xff0c;进行离线地图二次开发 2. 离线地图服务发布&#xff08;WMTS服务&#xff09; &#xff08;详细教程&#xff1a;卫星地图_高清卫星地图_地图编辑_离线地…

商品秒杀系统整理

1、使用redis缓存商品信息 2、互斥锁解决缓存击穿问题&#xff0c;用缓存空值解决缓存穿透问题。 3、CAS乐观锁解决秒杀超卖的问题 4、使用redission实现一人一单。&#xff08;分布式锁lua&#xff09;脚本。 5、使用lua脚本进行秒杀资格判断&#xff08;将库存和用户下单…

jupyter notebook进不去指定目录怎么办?

首先激活你要使用的虚拟环境 刚开始是现在 (base) C:\Users\lenovo>目录下 直接输入你想进入的盘 (base) C:\Users\lenovo>e:此时再cd (base) C:\Users\lenovo>cd E:\tim\learn_pytorch 就可以进入了 安装3.4.1.15问题 已经有了最新python版本的虚拟环境&#…