分类预测 | MATLAB实现WOA-CNN-GRU-Attention数据分类预测

分类预测 | MATLAB实现WOA-CNN-GRU-Attention数据分类预测

目录

    • 分类预测 | MATLAB实现WOA-CNN-GRU-Attention数据分类预测
      • 分类效果
      • 基本描述
      • 模型描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本描述

1.MATLAB实现WOA-CNN-GRU-Attention数据分类预测,运行环境Matlab2021b及以上;
2.基于鲸鱼优化算法(WOA)、卷积神经网络(CNN)和门控循环单元(GRU)的数据分类预测程序;
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用;过WOA优化算法优化学习率、卷积核大小、神经元个数,这3个关键参数,以测试集精度最高为目标函数
程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图;
4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行,可在下载区获取数据和程序内容。
5.适用领域:适用于各种数据分类场景,如滚动轴承故障、变压器油气故障、电力系统输电线路故障区域、绝缘子、配网、电能质量扰动,等领域的识别、诊断和分类。
使用便捷:直接使用EXCEL表格导入数据,无需大幅修改程序。内部有详细注释,易于理解。

模型描述

注意力机制模块:
SEBlock(Squeeze-and-Excitation Block)是一种聚焦于通道维度而提出一种新的结构单元,为模型添加了通道注意力机制,该机制通过添加各个特征通道的重要程度的权重,针对不同的任务增强或者抑制对应的通道,以此来提取有用的特征。该模块的内部操作流程如图,总体分为三步:首先是Squeeze 压缩操作,对空间维度的特征进行压缩,保持特征通道数量不变。融合全局信息即全局池化,并将每个二维特征通道转换为实数。实数计算公式如公式所示。该实数由k个通道得到的特征之和除以空间维度的值而得,空间维数为H*W。其次是Excitation激励操作,它由两层全连接层和Sigmoid函数组成。如公式所示,s为激励操作的输出,σ为激活函数sigmoid,W2和W1分别是两个完全连接层的相应参数,δ是激活函数ReLU,对特征先降维再升维。最后是Reweight操作,对之前的输入特征进行逐通道加权,完成原始特征在各通道上的重新分配。

1
2

程序设计

  • 完整程序和数据获取方式:私信博主回复MATLAB实现WOA-CNN-GRU-Attention数据分类预测
%%  优化算法参数设置
SearchAgents_no = 8;                   % 数量
Max_iteration = 5;                    % 最大迭代次数
dim = 3;                               % 优化参数个数
lb = [1e-3,10 1e-4];                 % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30,1e-1];                 % 参数取值上界(学习率,隐藏层节点,正则化系数)fitness = @(x)fical(x,num_dim,num_class,p_train,t_train,T_train);[Best_score,Best_pos,curve]=WOA(SearchAgents_no,Max_iteration,lb ,ub,dim,fitness)
Best_pos(1, 2) = round(Best_pos(1, 2));   
best_hd  = Best_pos(1, 2); % 最佳隐藏层节点数
best_lr= Best_pos(1, 1);% 最佳初始学习率
best_l2 = Best_pos(1, 3);% 最佳L2正则化系数%% 建立模型
lgraph = layerGraph();                                                   % 建立空白网络结构
tempLayers = [sequenceInputLayer([num_dim, 1, 1], "Name", "sequence")              % 建立输入层,输入数据结构为[num_dim, 1, 1]sequenceFoldingLayer("Name", "seqfold")];                            % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中
tempLayers = [convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1]16个特征图reluLayer("Name", "relu_1")                                          % Relu 激活层lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中tempLayers = [sequenceUnfoldingLayer("Name", "sequnfold")                      % 建立序列反折叠层flattenLayer("Name", "flatten")                                  % 网络铺平层fullyConnectedLayer(num_class, "Name", "fc")                     % 全连接层softmaxLayer("Name", "softmax")                                  % softmax激活层classificationLayer("Name", "classification")];                  % 分类层
lgraph = addLayers(lgraph, tempLayers);                              % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); % 折叠层输出连接反折叠层输入
lgraph = connectLayers(lgraph, "relu_2", "sequnfold/in");            % 激活层输出 连接 反折叠层输入%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法'MaxEpochs', 500,...                 % 最大训练次数 'InitialLearnRate', best_lr,...          % 初始学习率为0.001'L2Regularization', best_l2,...         % L2正则化参数'LearnRateSchedule', 'piecewise',...  % 学习率下降'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1'LearnRateDropPeriod', 400,...        % 经过训练后 学习率为 0.001*0.1'Shuffle', 'every-epoch',...          % 每次训练打乱数据集'ValidationPatience', Inf,...         % 关闭验证'Plots', 'training-progress',...      % 画出曲线'Verbose', false);%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/143717.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Ubuntu 安装PostgreSQL

网上有各种版本的,也可以去官网看官方的文档。我是下载的PostgreSQL-11.4版本的。找到以后直接复制网上的压缩包链接就可以。 $ mkdir /opt/postgresql && cd /opt/postgresql $ wget https://ftp.postgresql.org/pub/source/v11.4/postgresql-11.4.tar.gz…

基于规则架构-架构案例2019(三十九)

电子商务 某电子商务公司为了更好地管理用户,提升企业销售业绩,拟开发一套用户管理系统。该系统的基本功能是根据用户的消费级别、消费历史、信用情况等指标将用户划分为不同的等级,并针对不同等级的用户提供相应的折扣方案。在需求分析与架…

运行软件mfc100u.dll缺失是怎么办?mfc100u.dll丢失解决方法分享

Mfc100u.dll 丢失的问题可能困扰着许多使用计算机的用户。Mfc100u.dll 是一个重要的动态链接库文件,它包含了许多功能模块,如字符串处理、数学计算、文件操作等。当 Mfc100u.dll 文件丢失或损坏时,可能会导致许多应用程序无法正常运行&#x…

OS 模拟进程状态转换

下面的这个博主写的很好 但是他给的代码print部分和语言风格python三识别不了 这个特别感谢辰同学帮我调好了代码 我放在主页上了 估计过两天就可以通过了 《操作系统导论》实验一:模拟进程状态转换_process-run.py-CSDN博客 这个补充一下他没有的:OS…

基于yum制作kylin系统docker镜像

注意,由于线上源版本与iso源存在差异,应采用iso源制作docker镜像 [rootlocalhost yeqiang]# yum install --installroot/home/yeqiang/kylin-docker/ yum 无法找到发布版本(可用 --releasever 指定版本) 警告:加载 /e…

正交对角化,奇异值分解

与普通矩阵对角化不同的是,正交对角化是使用正交矩阵对角化,正交矩阵是每列向量都是单位向量,正交矩阵*它的转置就是单位矩阵 与普通矩阵对角化一样,正交对角化的结果也是由特征值组成的对角矩阵 本质还是特征向量对原矩阵的拉伸…

【Java】异常

1. Java的异常概念 1.1 异常体系结构 从上图中可以看到: 1. Throwable:是异常体系的顶层类,其派生出两个重要的子类, Error 和 Exception 2. Error:指的是JVM无法解决的严重问题,比如:JVM的内部错误、资源…

澳大利亚新版《2023年消费品(36个月以下儿童玩具) 安全标准》发布 旨在降低危险小零件的伤害

2023年9月4日,澳大利亚政府发布了新的儿童玩具强制性安全标准《2023年消费品(36个月以下儿童玩具)安全标准》(Consumer Goods (Toys for Children up to and including 36 Months of Age) Safety Standard 2023)。该强制性标准旨在尽可能地降…

MySQL学习笔记20

备份过程需要考虑的因素: 1、必须制定详细的备份计划(策略)(备份频率、时间点、周期)。 一天做一次增量、一周做一次全量。 2、备份数据应该放在非数据本地,并建议多份备份。 可以放在另外一台服务器上…

python使用mitmproxy和mitmdump抓包以及对手机

mitmproxy是一个中间人角色,供python抓包使用。 本机环境:win10 64位,python3.10.4。首先安装mitmproxy,参考我的文章 记录一下python2和python3在同一台电脑上共存使用并安装各自的库以及各自在pycharm中使用的方法-CSDN博客 一…

Nginx的反向代理、动静分离、负载均衡

反向代理 反向代理是一种常见的网络技术,它可以将客户端的请求转发到服务器群集中的一个或多个后端服务器上进行处理,并将响应结果返回给客户端。反向代理技术通常用于提高网站的可伸缩性和可用性,并且可以隐藏真实的后端服务器地址。 #user…

Servlet开发-通过代码案例熟悉HttpServletRequest类

关于Servlet开发的流程推荐看servlet开发-通过Tomcat部署一个简单的webapp Servlet开发与idea集成的插件安装推荐看idea集成tomcat(Smart Tomcate插件安装) postman(第三方创建HTTP请求工具)的安装推荐看创建HTTP请求的几种方式…

组网行动指南:打造对跨国企业友好的专用网络环境

在全球数字化转型的浪潮下,越来越多的企业跨国发展业务,由于跨域网络的复杂性和自建网络架构的各种限制,导致分散在不同地理位置的站点无法实现数据互通和协作。 跨国企业组网常见痛点 痛点一:自建网络方案经常掉线,影…

【如何看待Unity收费】对标中小公司的待就业者的该如何做

👨‍💻个人主页:元宇宙-秩沅 👨‍💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍💻 本文由 秩沅 原创 👨‍💻 收录于专栏:Uni…

【红日靶场】vulnstack2-完整渗透过程

文章目录 一、网络拓扑二、描述配置环境渗透开始信息收集开始攻击干掉杀软cs上线权限提升 内网探测横向移动再次横向rdp连接痕迹清除 总结: 一、网络拓扑 网络配置: 二、描述 红队实战系列,主要以真实企业环境为实例搭建一系列靶场&#x…

多线程的学习中篇下

volatile 关键字 volatile 能保证内存可见性 volatile 修饰的变量, 能够保证 “内存可见性” 示例代码: 运行结果: 当输入1(1是非O)的时候,但是t1这个线程并沿有结束循环, 同时可以看到,t2这个线程已经执行完了,而t1线程还在继续循环. 这个情况,就叫做内存可见性问题 ~~ 这…

再生之术:遗忘 Root 密码的 CentOS8 Stream 解决方案

文章目录 大魔头 RootGRUB 引导界面BootLoaderGRUB主要功能选择启动的操作系统编辑内核启动参数 进入GRUB 引导界面编辑内核启动参数单用户模式 进入内核编辑界面rd.break进入单用户模式 大魔头 Root 哈哈,你好!今天,让我们来聊聊 Linux 系统…

ElementPlus· tab切换/标签切换 + 分页

tab切换 ---> <el-tabs><el-tab-pane>... 分页 --------> <el-pagination> tab切换 // tab标签切换 // v-model双向绑定选项中的name&#xff0c;tab-change事件在 activeName改变时触发 <script setup> const tabChange (tab, event)>{…

PostgreSQL 数据库实现公网远程连接

文章目录 前言1. 安装postgreSQL2. 本地连接postgreSQL3. Windows 安装 cpolar4. 配置postgreSQL公网地址5. 公网postgreSQL访问6. 固定连接公网地址7. postgreSQL固定地址连接测试 前言 PostgreSQL是一个功能非常强大的关系型数据库管理系统&#xff08;RDBMS&#xff09;,下…

微信小程序 预约系统

目录 前端介绍主要页面介绍主页面签到相关页面个人中心扫描页面工作页面 技术栈说明 后端介绍技术栈说明 前端介绍 主要页面介绍 主页面 这个页面主要是一个轮播图加上三个小按钮和一个海报&#xff0c;具体可以看代码 签到相关页面 这一些列图片展示了&#xff0c;签到的流…