PSINS工具箱学习(一)下载安装初始化、SINS-GPS组合导航仿真、习惯约定与常用变量符号、数据导入转换、绘图显示

原始 Markdown文档、Visio流程图、XMind思维导图见:https://github.com/LiZhengXiao99/Navigation-Learning

文章目录

    • 一、前言
    • 二、相关资源
    • 三、下载安装初始化
      • 1、下载PSINSyymmdd.rar工具箱文件
      • 2、解压文件
      • 3、初始化
      • 4、启动工具箱导览
    • 四、习惯约定与常用变量符号
      • 1、PSINS全局变量结构体 glv
      • 2、坐标系定义
      • 3、姿态阵/姿态四元数/欧拉角 Cnb/qnb/att
      • 4、IMU采样数据 imu
      • 5、AVP导航参数 avp
      • 6、误差参数
      • 7、其它常用变量
        • 1.角速率 wnie
        • 2. 不可交换误差补偿 phim/dvbm
        • 3.重力矢量 gn
        • 4.有害加速度 gcc
        • 5.仿真轨迹结构体 trj
        • 6.指北方位捷联导航解算结构体 ins
        • 7.导航地球相关计算结构体 eth
        • 8.Kalman滤波结构体 kf
    • 五、数据导入、转换
    • 六、绘图显示
      • 1、绘图辅助函数
      • 2、传感器数据绘图
      • 3、导航结果绘图
      • 4、进度条函数
    • 七、SINS/GPS组合导航仿真举例
      • 1、生成仿真轨迹
      • 2、纯惯导仿真
      • 3、SINS-GPS仿真

一、前言

PSINS(Precise Strapdown Inertial Navigation System 高精度捷联惯导系统算法)工具箱由西北工业大学自动化学院惯性技术教研室严恭敏老师开发和维护。工具箱分为Matlab和C++两部分。主要应用于捷联惯导系统的数据处理和算法验证开发,它包括惯性传感器数据分析惯组标定初始对准惯导AVP(姿态-速度-位置)更新解算、组合导航Kalman滤波等功能。C++部分采用VC6编写,可以用于嵌入式开发。如果你之前还没接触过PSINS工具箱,强烈建议先去看严老师的 视频讲解

下面再推荐一些已有的博客:

  • 十八与她 的专栏 PSINS工具箱基本原理与应用
  • 枯荣有常 的专栏 psins代码解析
  • 路痴导航员 的 关于PSINS运动轨迹仿真模块的理解和思考 等
  • waihekor 的 PSINS源码阅读—test_SINS_trj、PSINS源码test_SINS_DR解析 、PSINS C++代码移植与效果测试 等
  • S1301060113 的 严恭敏老师PSINS工具箱解读——test_SINS_GPS_153、glvf 、imuadderr 等

二、相关资源

  • PSINS网站 可下载最新PSINS工具箱源码及课程PPT,导航数据。还有新浪博客、知乎 上有技术交流文章、推荐知乎,一直在更新,排版也好一些。

  • PSINS导航算法QQ群:46819593,人快满了,不知道还能不能进了。

  • bilibili课程视频:卡尔曼滤波与组合导航原理【西北工业大学 严恭敏】:共10讲,先讲Kalman滤波,后讲捷联惯导算法。

  • bilibili课程视频:PSINS导航工具箱入门与详解【西北工业大学 严恭敏】 :共4讲,对工具箱的功能、使用方式、原理做了很详细的讲解。

    • 第一课:工具箱简介、下载与安装初始化、快速开始—SINS/GNSS组合导航仿真举例
    • 第二课:习惯约定与常用变量符号、导入数据文件与数据提取转换、绘图显示、姿态阵/姿态四元数/欧拉角/等效旋转矢量之间的转换函数
    • 第三课:运动轨迹与惯性器件信息生成仿真、惯性器件误差模拟与分析、不可交换(圆锥/划桨)误差补偿、捷联惯导更新算法、初始对准方法、卡尔曼滤波与SINS/GNSS组合导航、捷联惯导的系统级标定
    • 第四课:C++导航库函数
  • PSINS开发板:bilibili介绍视频、淘宝链接、780元

    1686649442025

三、下载安装初始化

1、下载PSINSyymmdd.rar工具箱文件

直接在PSINS网站 www.psins.org.cn 下载,yymmdd—“年年月月日日”表示版本信息,选一个最新版的下就行。我用的版本是psins230321

2、解压文件

建议在D盘根目录,文件解压完之后不要改动任何文件夹名称,各子文件夹功能:

  • base:核心算法、数据预处理及图形显示等库函数。
  • data:用于工具箱提供的样本数据、生成中间数据、或用户输入输出存放数据;为了控制文件大小,很多数据没放在里面,PSINS网站上还有很多。
  • demos:一系列演示和测试例子。
  • dlg:可视化(对话框)应用例子。
  • doc:工具箱介绍和使用说明等文档;除此以外每个matlab文档上面有一个help也对用法做了介绍。
  • gnss:仅试图用于SINS/GNSS紧组合中卫导信号处理,不太专业。
  • mytest:建议用户修改、编写的测试和应用例子放在该文件夹下;如果更新的版本,把mytest复制出来就行,减小冲突。
  • vc60:VC6.0工程文件夹,导航核心算法用C++编写,可移植于嵌入式应用:核心算法、数据预处理及图形显示等库函数;

3、初始化

启动Matlab软件,打开PSINS根目录下的psinsinit.m文件,运行,即可完成工具箱的安装初始化。

  • 初始化过程也就是将PSINSyymmdd及其所有子文件夹添加到Matlab的搜索路径下并保存路径设置;
  • 初始化之后尽量不要改动PSINS文件夹位置,改动要重新初始化。
  • 新版本的安装初始化会移除以往添加到 Matlab 的含“PSINS”字符的所有路径,减小冲突。
  • 不要自己用addpath添加路径,如果下多个版本,可能会冲突。

1686706404390

4、启动工具箱导览

打开PSINS根目录下的psinsmain.m文件,运行,启动“工具箱导览”主界面,点击相应按钮可感受工具箱的主要演示/测试例子;如果勾选了左上角的“查看m文件源码”,再点按钮就是阅览相应的程序源代码。

1686661051114

四、习惯约定与常用变量符号

  • PSINS里的变量很多都是简写,这里给出一些常用的,看完这些再看代码会比较容易一些。
  • 工具箱中所有的物理量在内部计算都使用标准单位,比如角度用 r a d rad rad、比力用 m / s 2 m/s^2 m/s2 等。只有在初始化输入参数时才会用习惯单位。
  • 有角标的符号书写一般遵从规律是从左到右从上到下
  • 把我代码里的注释复制自己的代码里,以后看着就方便了。

1、PSINS全局变量结构体 glv

它是 global variable 的缩写,内容可以在 glvf 函数里看,运行脚本 glvs.m 即可初始化全局变量glv,一般在主文件都会先执行 glvs 初始化全局变量。

clear global glv
global glv
glv = glvf;

glvf函数有三个参数,Re是地球半径, f是地球扁率, wie是地球自转角速率,如果不传参数,默认WGS-84坐标系。

参考:严恭敏老师PSINS工具箱解读——glvf

function glv1 = glvf(Re, f, wie)
global glv% 三个参数,Re是地球半径, f是地球扁率, wie是地球自转角速率,% 如果不传参数,默认使用WGS-84坐标系            if ~exist('Re', 'var'),  Re = [];  endif ~exist('f', 'var'),   f = [];  endif ~exist('wie', 'var'), wie = [];  endif isempty(Re),  Re = 6378137;  end         if isempty(f),   f = 1/298.257;  endif isempty(wie), wie = 7.2921151467e-5;  end    glv.Re = Re;                    % the Earth's semi-major axis       长半轴glv.f = f;                      % flattening                        扁率glv.Rp = (1-glv.f)*glv.Re;      % semi-minor axis                   短半轴glv.e = sqrt(2*glv.f-glv.f^2); glv.e2 = glv.e^2; % 1st eccentricity 第一偏心率glv.ep = sqrt(glv.Re^2-glv.Rp^2)/glv.Rp; glv.ep2 = glv.ep^2; % 2nd eccentricity 第二偏心率glv.wie = wie;                  % the Earth's angular rate          自转角速率glv.meru = glv.wie/1000;        % milli earth rate unit     自转角速率的千分之一% 地球重力,g0:G、mg:毫G、ug:微G glv.g0 = 9.7803267714;          % gravitational force 重力glv.mg = 1.0e-3*glv.g0;         % milli gglv.ug = 1.0e-6*glv.g0;         % micro gglv.mGal = 1.0e-3*0.01;         % milli Gal = 1cm/s^2 ~= 1.0E-6*g0glv.uGal = glv.mGal/1000;       % micro Galglv.ugpg2 = glv.ug/glv.g0^2;    % ug/g^2glv.ws = 1/sqrt(glv.Re/glv.g0); % Schuler frequency 舒勒频率glv.ppm = 1.0e-6;               % parts per million     百万分之一glv.deg = pi/180;               % arcdeg                单位:弧度glv.min = glv.deg/60;           % arcmin                单位:弧分glv.sec = glv.min/60;           % arcsec                单位:弧秒glv.mas = glv.sec/1000;         % milli arcsec          单位:弧毫秒glv.hur = 3600;                 % time hour (1hur=3600second) 一小时% 陀螺仪glv.dps = pi/180/1;             % arcdeg / second           度每秒glv.rps = 360*glv.dps;          % revolutions per second    度每分钟glv.dph = glv.deg/glv.hur;      % arcdeg / hour             度每小时glv.dpss = glv.deg/sqrt(1);     % arcdeg / sqrt(second)glv.dpsh = glv.deg/sqrt(glv.hur);  % arcdeg / sqrt(hour)glv.dphpsh = glv.dph/sqrt(glv.hur); % (arcdeg/hour) / sqrt(hour)glv.dph2 = glv.dph/glv.hur;    % (arcdeg/hour) / hourglv.Hz = 1/1;                   % Hertzglv.dphpsHz = glv.dph/glv.Hz;   % (arcdeg/hour) / sqrt(Hz) glv.dphpg = glv.dph/glv.g0;     % (arcdeg/hour) / gglv.dphpg2 = glv.dphpg/glv.g0;  % (arcdeg/hour) / g^2glv.ugpsHz = glv.ug/sqrt(glv.Hz);  % ug / sqrt(Hz)glv.ugpsh = glv.ug/sqrt(glv.hur); % ug / sqrt(hour)glv.mpsh = 1/sqrt(glv.hur);     % m / sqrt(hour)glv.mpspsh = 1/1/sqrt(glv.hur); % (m/s) / sqrt(hour), 1*mpspsh~=1700*ugpsHzglv.ppmpsh = glv.ppm/sqrt(glv.hur); % ppm / sqrt(hour)glv.mil = 2*pi/6000;            % milglv.nm = 1853;                  % nautical mile             单位:海里glv.kn = glv.nm/glv.hur;        % knot                      单位:节-海洋中的速度单位glv.kmph = 1000/glv.hur;        % km/hour%%glv.wm_1 = [0,0,0];   % the init of previous gyro           陀螺仪角度增量glv.vm_1 = [0,0,0];   % the init of previous acc sample     加速度计速度增量glv.cs = [    % coning & sculling compensation coefficients 锥度和双桨补偿系数[2,    0,    0,    0,    0    ]/3[9,    27,   0,    0,    0    ]/20[54,   92,   214,  0,    0    ]/105[250,  525,  650,  1375, 0    ]/504 [2315, 4558, 7296, 7834, 15797]/4620 ];glv.csmax = size(glv.cs,1)+1;  % max subsample number   最大子样本数glv.v0 = [0;0;0];    % 3x1 zero-vector                  3x1 零向量glv.qI = [1;0;0;0];  % identity quaternion              特征四元数glv.I33 = eye(3); glv.o33 = zeros(3);  % identity & zero 3x3 matricesglv.pos0 = [34.246048*glv.deg; 108.909664*glv.deg; 380]; % position of INS Lab@NWPUglv.eth = []; glv.eth = earth(glv.pos0);         %利用earth函数计算地球的相关参数glv.t0 = 0;glv.tscale = 1;  % =1 for second, =60 for minute, =3600 for hour, =24*3600 for dayglv.isfig = 1;glv.dgn = [];%%[glv.rootpath, glv.datapath, glv.mytestflag] = psinsenvi;glv1 = glv;     % 返回全局变量的结构体

1686966499398

2、坐标系定义

  • 惯性坐标系(i):陀螺仪和加速度计测量值的基准
  • 地球坐标系(e):即ECEF坐标系
  • 导航坐标系(n):东E-北N-天U
  • 载体坐标系(b):右R-前F-上U

1686708755628

3、姿态阵/姿态四元数/欧拉角 Cnb/qnb/att

  • 姿态阵:Cnb,表示从 b 系到 n 系的坐标变换矩阵。对应姿态四元数写为qnb
  • 欧拉角:att=[俯仰pitch; 横滚roll; 方位yaw]。没有按照转到顺序来写,如果按转到顺序,东北天坐标系转到右前下坐标系,常见先转方位角、然后俯仰角、横滚角

1686708789937

4、IMU采样数据 imu

imu=[wm; vm; t] 其中:

  • wm为陀螺三轴角增量,是角速率积分,单位rad,1~3列,右前上。
  • vm为加表三轴速度增量,是比力积分,单位m/s,4~6列,右前上。100Hz静止采样,第6列的数据是0.098左右,如果不是这种特征就有问题,IMU可以需要坐标转换。
  • PSINS惯导算法里使用的陀螺和加表输入都是增量信息,如果用户数据中是角速度/比力信息,则简单地乘以采样间隔ts处理即可。
  • 时标通常放在最后一列,imu一般都是等间隔采样,有些不等间隔的可能是因为时钟的抖动,可以平均转换成等间隔。

1686966171875

5、AVP导航参数 avp

avp=[att; vn; pos; t]。其中:

  • 姿态:att=[俯仰pitch; 横滚roll; 方位yaw];单位rad
  • 速度:vn=[东速vE; 北速vN; 天速vU]
  • 位置:pos=[纬度lat; 经度lon; 高度hgt];单位rad

1686966204380

6、误差参数

  • 失准角误差phi=[phiE;phiN;phiU];速度误差dvn;位置误差dpos=[dlat;dlon;dhgt];(d一般指误差 δ \delta δ

  • 陀螺漂移eb=[ebx;eby;ebz];加表零偏db=[dbx;dby;dbz]web为陀螺角度随机游走/角速率白噪声;wdb为加计速度随机游走/比力白噪声;(b表示b系投影、wb表示白噪声)

  • 陀螺标定误差矩阵dKg;加表标定误差矩阵dKa;(d表示陀螺、a表示加速度计)

  • IMU误差结构体imuerr,包含较多成员,可见imuerrset函数。

    参考:严恭敏老师PSINS工具箱解读——imuerrset

function imuerr = imuerrset(eb, db, web, wdb, sqrtR0G, TauG, sqrtR0A, TauA, dKGii, dKAii, dKGij, dKAij, KA2, rxyz, dtGA)
% SIMU errors setting, including gyro & acc bias, noise and installation errors, etc.
%
% Prototype: imuerr = imuerrset(eb, db, web, wdb, sqrtR0G, TauG, sqrtR0A, TauA, dKGii, dKAii, dKGij, dKAij, KA2, rxyz, dtGA)
% Inputs: including information as follows          陀螺常值零偏,单位:度/小时
%     eb - gyro constant bias (deg/h)               加速度计常值零偏,单位:微g
%     db - acc constant bias (ug)                   角度随机游走,单位:度/根号小时
%     web - angular random walk (deg/sqrt(h))       速度随机游走,单位:微g/根号赫兹
%     wdb - velocity random walk (ug/sqrt(Hz))      陀螺相关零偏,单位:度/小时
%     sqrtR0G,TauG - gyro correlated bias, sqrtR0G in deg/h and TauG in s
%     sqrtR0A,TauA - acc correlated bias, sqrtR0A in ug and TauA in s
%     dKGii - gyro scale factor error (ppm)         陀螺尺度因子误差,单位:百万分之一
%     dKAii - acc scale factor error (ppm)          加速度计尺度因子误差,单位:百万分之一
%     dKGij - gyro installation error (arcsec)      陀螺安装误差角,单位:弧秒
%     dKAij - acc installation error (arcsec)       加速度计安装误差角,单位:弧秒
%     KA2 - acc quadratic coefficient (ug/g^2)      加速度计二次系数,单位:微g/g平方
%       where,  
%               |dKGii(1) dKGij(4) dKGij(5)|         |dKAii(1) 0        0       | 陀螺和加速度计的标定刻度误差
%         dKg = |dKGij(1) dKGii(2) dKGij(6)| , dKa = |dKAij(1) dKAii(2) 0       |
%               |dKGij(2) dKGij(3) dKGii(3)|         |dKAij(2) dKAij(3) dKAii(3)|
%     rxyz - acc inner-lever-arm, =[rx;ry;rz] (cm)  加速度计内杠杆臂,单位:厘米
%     dtGA - time-asynchrony between gyro & acc, dtGA=Tacc_later-Tgyro_early>0 (ms) 陀螺和加速度计采样时刻未对准误差,单位:毫秒
% Output: imuerr - SIMU error structure array
%
% Example: 惯性级惯导的经典误差设置
%     For inertial grade SIMU, typical errors are: 
%       eb=0.01dph, db=50ug, web=0.001dpsh, wdb=10ugpsHz
%       scale factor error=10ppm, askew installation error=10arcsec
%       sqrtR0G=0.001dph, taug=1000s, sqrtR0A=10ug, taug=1000s
%    then call this funcion by
%       imuerr = imuerrset(0.01,100,0.001,10, 0.001,1000,10,1000, 10,10,10,10, 10, 10, 10);
%
% See also  imuadderr, gabias, avperrset, insinit, kfinit.% Copyright(c) 2009-2014, by Gongmin Yan, All rights reserved.
% Northwestern Polytechnical University, Xi An, P.R.China
% 11/09/2013, 06/03/2014, 15/02/2015, 22/08/2015, 17/08/2016, 24/07/2020
global glvif nargin==1  % for specific defined case switch eb       % 只输入一个参数eb,eb应为1或2,采用严老师设置的惯性级imu误差case 1,  imuerr = imuerrset(0.01, 100, 0.001, 10);case 2,  imuerr = imuerrset(0.01,100,0.001,10, 0.001,300,10,300, 10,10,10,10, 10, 2, 1);endreturn;endo31 = zeros(3,1); o33 = zeros(3);% 设置imu误差结构体,对未输入变量设置默认值imuerr = struct('eb',o31, 'db',o31, 'web',o31, 'wdb',o31,...'sqg',o31, 'taug',inf(3,1), 'sqa',o31, 'taua',inf(3,1), 'dKg',o33, 'dKa',o33, 'dKga',zeros(15,1),'KA2',o31); %% constant bias & random walk  陀螺和加速度计的常值零偏和随机游走if ~exist('web', 'var'), web=0; end     % 如果未输入角度随机游走,则设置其为0if ~exist('wdb', 'var'), wdb=0; end     % 如果未输入速度随机游走,则设置其为0if length(eb)==2, eb=[eb(1);eb(1);eb(2)]; endif length(db)==2, db=[db(1);db(1);db(2)]; endif length(web)==2, web=[web(1);web(1);web(2)]; endif length(wdb)==2, wdb=[wdb(1);wdb(1);wdb(2)]; end% 转化成国际标准单位imuerr.eb(1:3) = eb*glv.dph;   imuerr.web(1:3) = web*glv.dpsh;imuerr.db(1:3) = db*glv.ug;    imuerr.wdb(1:3) = wdb*glv.ugpsHz;%% correlated bias 陀螺和加速度计的相关零偏if exist('sqrtR0G', 'var')if TauG(1)==inf, imuerr.sqg(1:3) = sqrtR0G*glv.dphpsh;   % algular rate random walk !!!     如果陀螺相关时间无穷大,陀螺零偏建模成随机游走elseif TauG(1)>0, imuerr.sqg(1:3) = sqrtR0G*glv.dph.*sqrt(2./TauG); imuerr.taug(1:3) = TauG; % Markov process 如果陀螺相关时间大于0,陀螺零偏建模成马尔可夫过程endendif exist('sqrtR0A', 'var')if TauA(1)==inf, imuerr.sqa(1:3) = sqrtR0A*glv.ugpsh;   % specific force random walk !!!    如果加速度计相关时间无穷大,加速度计零偏建模成随机游走elseif TauA(1)>0, imuerr.sqa(1:3) = sqrtR0A*glv.ug.*sqrt(2./TauA); imuerr.taua(1:3) = TauA; % Markov process 如果加速度计相关时间大于0,加速度计零偏建模成马尔可夫过程endend%% scale factor error 陀螺和加速度计的尺度因子误差if exist('dKGii', 'var')imuerr.dKg = setdiag(imuerr.dKg, dKGii*glv.ppm);    % 将陀螺尺度因子误差赋值予陀螺标定刻度误差的对角线元素endif exist('dKAii', 'var')imuerr.dKa = setdiag(imuerr.dKa, dKAii*glv.ppm);end%% installation angle errorif exist('dKGij', 'var') % 将陀螺安装误差角赋值予陀螺标定刻度误差的非对角线元素dKGij = ones(6,1).*dKGij*glv.sec;    imuerr.dKg(2,1) = dKGij(1); imuerr.dKg(3,1) = dKGij(2); imuerr.dKg(3,2) = dKGij(3); imuerr.dKg(1,2) = dKGij(4); imuerr.dKg(1,3) = dKGij(5); imuerr.dKg(2,3) = dKGij(6);endif exist('dKAij', 'var') % 将陀螺安装误差角赋值予陀螺标定刻度误差的非对角线元素dKAij = ones(3,1).*dKAij*glv.sec;imuerr.dKa(2,1) = dKAij(1); imuerr.dKa(3,1) = dKAij(2); imuerr.dKa(3,2) = dKAij(3); endimuerr.dKga = [imuerr.dKg(:,1); imuerr.dKg(:,2);   imuerr.dKg(:,3);imuerr.dKa(:,1); imuerr.dKa(2:3,2); imuerr.dKa(3,3)];%% acc 2nd scale factor error 加速度计比例因子误差的二阶项if exist('KA2', 'var')imuerr.KA2(1:3) = KA2*glv.ugpg2; end%% acc inner-lever-arm error 加速度计的内杠杆臂误差if exist('rxyz', 'var')if length(rxyz)==1, rxyz(1:6)=rxyz; endif length(rxyz)==6, rxyz(7:9)=[0;0;0]; end imuerr.rx = rxyz(1:3)/100; imuerr.ry = rxyz(4:6)/100; imuerr.rz = rxyz(7:9)/100;end%% time-asynchrony between gyro & acc  陀螺和加速度计采样时刻未对准误差if exist('dtGA', 'var')imuerr.dtGA = dtGA/1000; % dtGA>0,加速度计采样滞后陀螺end

7、其它常用变量

1.角速率 wnie

角速率 ω i e n \omega^n_{ie} ωien e e e 系相对于 i i i 系的角速度在 n n n 系的投影。wninwnen等变量符号类似,表示 ω i n n \omega^n_{in} ωinn ω e n n \omega^n_{en} ωenn

2. 不可交换误差补偿 phim/dvbm

陀螺角增量经不可交换误差补偿后的等效旋转矢量 ϕ m \phi_m ϕm

m − 1 m-1 m1 m m m 时间段比力速度增量,经过不可交换误差补偿后的比力速度增量 Δ V m b \Delta V_m^b ΔVmb

3.重力矢量 gn

当地重力矢量gn=[0;0;-g]n表示 n n n 系下投影,g为重力大小

4.有害加速度 gcc

有害加速度,两个c,一个表示哥氏,一个表示向心力

5.仿真轨迹结构体 trj

仿真轨迹结构体,存仿真中得到的avgimu等参数,参见base1文件夹中的trjsimu函数:

global glvif nargin<4, repeats = 1; endwat1 = repmat(wat, repeats, 1);% 设置初始参数:位置、姿态、地球参数damping = 1-exp(-ts/5.0); % damping=0;att = avp0(1:3); vn = avp0(4:6); pos = avp0(7:9);eth = earth(pos, vn);  Cbn_1 = a2mat(att)';  wm_1 = [0;0;0]; ts2 = ts/2;
%     Mpv = [0, 1/eth.RMh, 0; 1/eth.clRNh, 0, 0; 0, 0, 1];len = fix(sum(wat1(:,1))/ts);[imu, avp] = prealloc(len, 7, 10);ki = timebar(1, len, 'Trajectory Simulation.');for k=1:size(wat1,1)lenk = round(wat1(k,1)/ts);  % the lenght at k phase K时段的长度wt = wat1(k,3:5)'; at = wat1(k,6:8)';  % 当前时刻角速率、加速度% 设置匀速运动ufflag、计算导航系参考速度ufflag = 0;if norm(wt)==0 && norm(at)==0  % uniform phase flagufflag = 1; vnr = a2mat(att)*[0;wat1(k,2);0];  % velocity damping referenceendfor j=1:lenk% 计算Cnt,将前向速度通过航向角、俯仰角转到导航系sa = sin(att); ca = cos(att);si = sa(1); sk = sa(3); ci = ca(1); ck = ca(3); Cnt = [ ck, -ci*sk,  si*sk; sk,  ci*ck, -si*ck; 0,   si,     ci ];% 计算当前时刻姿态及 b->n 旋转矩阵        att = att + wt*ts;Cnb = a2mat(att);   % attitudeif ufflag==1  % dampingna = norm(vn-vnr)/ts;  maxa = 0.1;if na<maxa,  na=maxa;  end  % max an is limited to maxa/(m/s^2)vn1 = vn-damping/na*(vn-vnr);  an = (vn1-vn)/ts;vn01 = (vn+vn1)/2;  vn = vn1;elsean = Cnt*at;vn1 = vn + an*ts;  vn01 = (vn+vn1)/2;  vn = vn1;  % velocityend% 根据平均速度更新位置dpos01 = [vn01(2)/eth.RMh;vn01(1)/eth.clRNh;vn01(3)]*ts2;eth = earth(pos+dpos01, vn01);pos = pos+dpos01*2;      % position
%             eth = earth(pos+Mpv*vn01*ts2, vn01);
%             Mpv = [0, 1/eth.RMh, 0; 1/eth.clRNh, 0, 0; 0, 0, 1];
%             pos = pos+Mpv*vn01*ts;      % position% 更新陀螺输出wmphim = m2rv(Cbn_1*Cnb) + (Cbn_1+Cnb')*(eth.wnin*ts2);
%             wm = phim;wm = (glv.I33+askew(wm_1/12))^-1*phim;   % gyro increment
%             wm = (glv.I33-askew(wm_1/12))*phim;   % gyro increment
%             dvbm = Cbn_1*qmulv(rv2q(eth.wnin*ts2), (an-eth.gcc)*ts);% 更新加速度输出vmdvbm = Cbn_1*(rv2m(eth.wnin*ts2)*(an-eth.gcc)*ts);vm = (glv.I33+askew(wm/2))^-1*dvbm;   % acc increment
%             vm = (glv.I33-askew(wm/2))*dvbm;   % acc incrementkts = ki*ts;avp(ki,:) = [att; vn; pos; kts]';imu(ki,:) = [wm; vm; kts]';wm_1 = wm; Cbn_1 = Cnb';ki = timebar;endendavp(ki:end,:) = []; imu(ki:end,:) = [];avp = iatt2c(avp);trj = varpack(imu, avp, avp0, wat, ts, repeats);

1686966263027

6.指北方位捷联导航解算结构体 ins

指北方位捷联导航解算结构体,参见base1文件夹中的insinit函数:

function ins = insinit(avp0, ts, var1, var2)
% SINS structure array initialization.
%
% Prototype: ins = insinit(avp0, ts, var1, var2)
% Initialization usages(maybe one of the following methods):
%       ins = insinit(avp0, ts);
%       ins = insinit(avp0, ts, avperr);
%       ins = insinit(qnb0, vn0, pos0, ts);
% Inputs: avp0 - initial avp0 = [att0; vn0; pos0]
%         ts - SIMU sampling interval
%         avperr - avp error setting
% Output: ins - SINS structure array
%
% See also  insupdate, avpset, kfinit.% Copyright(c) 2009-2014, by Gongmin Yan, All rights reserved.
% Northwestern Polytechnical University, Xi An, P.R.China
% 22/03/2008, 12/01/2013, 18/03/2014
global glvavp0 = avp0(:);if length(avp0)==1, avp0=zeros(9,1); end  % ins = insinit(0, ts);if length(avp0)==4, avp0=[0;0;avp0(1); 0;0;0; avp0(2:4)]; end  % ins = insinit([yaw;pos], ts);if length(avp0)==6, avp0=[avp0(1:3); 0;0;0; avp0(4:6)]; end  % ins = insinit([att;pos], ts);if length(avp0)==7, avp0=[0;0;avp0]; end  % ins = insinit([yaw;vn;pos], ts);if nargin==2      % ins = insinit(avp0, ts);[qnb0, vn0, pos0] = setvals(a2qua(avp0(1:3)), avp0(4:6), avp0(7:9));elseif nargin==3  % ins = insinit(avp0, ts, avperr);avperr = var1;avp0 = avpadderr(avp0, avperr);[qnb0, vn0, pos0] = setvals(a2qua(avp0(1:3)), avp0(4:6), avp0(7:9));elseif nargin==4  % ins = insinit(qnb0, vn0, pos0, ts);[qnb0, vn0, pos0, ts] = setvals(avp0, ts, var1, var2);end        ins = [];ins.ts = ts; ins.nts = 2*ts;[ins.qnb, ins.vn, ins.pos] = setvals(qnb0, vn0, pos0); ins.vn0 = vn0; ins.pos0 = pos0;[ins.qnb, ins.att, ins.Cnb] = attsyn(ins.qnb);  ins.Cnb0 = ins.Cnb;ins.avp  = [ins.att; ins.vn; ins.pos];ins.eth = ethinit(ins.pos, ins.vn);% 'wib,web,fn,an,Mpv,MpvCnb,Mpvvn,CW' may be very useful outside SINS,% so we calucate and save them.ins.wib = ins.Cnb'*ins.eth.wnin;ins.fn = -ins.eth.gn;  ins.fb = ins.Cnb'*ins.fn;[ins.wnb, ins.web, ins.an] = setvals(zeros(3,1));ins.Mpv = [0, 1/ins.eth.RMh, 0; 1/ins.eth.clRNh, 0, 0; 0, 0, 1];ins.MpvCnb = ins.Mpv*ins.Cnb;  ins.Mpvvn = ins.Mpv*ins.vn; [ins.Kg, ins.Ka] = setvals(eye(3)); % calibration parameters[ins.eb, ins.db] = setvals(zeros(3,1));[ins.tauG, ins.tauA] = setvals(inf(3,1)); % gyro & acc correlation timeins.lever = zeros(3,1); ins = inslever(ins); % lever armins.tDelay = 0; % time delayins.openloop = 0;glv.wm_1 = zeros(3,1)';  glv.vm_1 = zeros(3,1)';  % for 'single sample+previous sample' coning algorithmins.an0 = zeros(3,1);  ins.anbar = ins.an0;

1686966397888

7.导航地球相关计算结构体 eth

导航地球相关计算结构体,参见 base1文件夹中的ethinit函数:

function eth = ethinit(pos, vn)
% The Earth related parameters (structure array) initialization.
%
% Prototype: eth = ethinit(pos, vn)
% Inputs: pos - geographic position [lat;lon;hgt]
%         vn - velocity
% Outputs: eth - parameter structure array
%
% See also  ethupdate, earth.% Copyright(c) 2009-2014, by Gongmin Yan, All rights reserved.
% Northwestern Polytechnical University, Xi An, P.R.China
% 23/05/2014
global glvif nargin<2,  vn = [0; 0; 0];  endif nargin<1,  pos = [0; 0; 0];  endeth.Re = glv.Re; eth.e2 = glv.e2; eth.wie = glv.wie; eth.g0 = glv.g0;eth = ethupdate(eth, pos, vn);eth.wnie = eth.wnie(:);   eth.wnen = eth.wnen(:);eth.wnin = eth.wnin(:);   eth.wnien = eth.wnien(:);eth.gn = eth.gn(:);       eth.gcc = eth.gcc(:);

1686966635190

8.Kalman滤波结构体 kf

Kalman 滤波结构体,会根据定义的维数psinsdef进行对应的初始化,参见kf文件夹中的kfinit函数:

function kf = kfinit(ins, varargin)
% Kalman filter initializes for structure array 'kf', this precedure 
% usually includs the setting of structure fields: Qt, Rk, Pxk, Hk.
%
% Prototype: kf = kfinit(ins, varargin)
% Inputs: ins - SINS structure array, if not struct then nts=ins;
%         varargin - if any other parameters
% Output: kf - Kalman filter structure array
%
% See also  kfinit0, kfsetting, kffk, kfkk, kfupdate, kffeedback, psinstypedef.% Copyright(c) 2009-2014, by Gongmin Yan, All rights reserved.
% Northwestern Polytechnical University, Xi An, P.R.China
% 09/10/2013
global glv psinsdef
[Re,deg,dph,ug,mg] = ... % just for shortsetvals(glv.Re,glv.deg,glv.dph,glv.ug,glv.mg); 
o33 = zeros(3); I33 = eye(3); 
kf = [];
if isstruct(ins),    nts = ins.nts;
else                 nts = ins;
end
switch(psinsdef.kfinit)case psinsdef.kfinit153,psinsdef.kffk = 15;  psinsdef.kfhk = 153;  psinsdef.kfplot = 15;[davp, imuerr, rk] = setvals(varargin);kf.Qt = diag([imuerr.web; imuerr.wdb; zeros(9,1)])^2;kf.Rk = diag(rk)^2;kf.Pxk = diag([davp; imuerr.eb; imuerr.db]*1.0)^2;kf.Hk = kfhk(0);case psinsdef.kfinit156,psinsdef.kffk = 15;  psinsdef.kfhk = 156;  psinsdef.kfplot = 15;[davp, imuerr, rk] = setvals(varargin);kf.Qt = diag([imuerr.web; imuerr.wdb; zeros(9,1)])^2;kf.Rk = diag(rk)^2;kf.Pxk = diag([davp; imuerr.eb; imuerr.db]*1.0)^2;kf.Hk = kfhk(0);case psinsdef.kfinit183,psinsdef.kffk = 18;  psinsdef.kfhk = 183;  psinsdef.kfplot = 18;[davp, imuerr, lever, r0] = setvals(varargin);kf.Qt = diag([imuerr.web; imuerr.wdb; zeros(9+3,1)])^2;kf.Rk = diag(r0)^2;kf.Pxk = diag([davp; imuerr.eb; imuerr.db; lever]*1.0)^2;kf.Hk = zeros(3,18);case psinsdef.kfinit186,psinsdef.kffk = 18;  psinsdef.kfhk = 186;  psinsdef.kfplot = 18;[davp, imuerr, lever, r0] = setvals(varargin);kf.Qt = diag([imuerr.web; imuerr.wdb; zeros(3,1); imuerr.sqg; imuerr.sqa; zeros(3,1)])^2;kf.Rk = diag(r0)^2;kf.Pxk = diag([davp; imuerr.eb; imuerr.db; lever]*1.0)^2;kf.Hk = zeros(6,18);case psinsdef.kfinit193psinsdef.kffk = 19;  psinsdef.kfhk = 193;  psinsdef.kfplot = 19;[davp, imuerr, lever, dT, r0] = setvals(varargin);kf.Qt = diag([imuerr.web; imuerr.wdb; [1/Re;1/Re;1]*glv.mpsh; ...[1;1;1]*0*glv.dphpsh; [1;1;1]*0*glv.ugpsh; [1;1;1]*0.*glv.mpsh; 0])^2;kf.Rk = diag(r0)^2;kf.Pxk = diag([davp; imuerr.eb; imuerr.db; lever; dT]*1.0)^2;kf.Hk = zeros(3,19);case psinsdef.kfinit196psinsdef.kffk = 19;  psinsdef.kfhk = 196;  psinsdef.kfplot = 19;[davp, imuerr, lever, dT, r0] = setvals(varargin);kf.Qt = diag([imuerr.web; imuerr.wdb; [1/Re;1/Re;1]*0*glv.mpsh; ...[1;1;1]*0*glv.dphpsh; [1;1;1]*0*glv.ugpsh; [1;1;1]*0*glv.mpsh; 0])^2;kf.Rk = diag(r0)^2;kf.Pxk = diag([davp; imuerr.eb; imuerr.db; lever; dT]*1.0)^2;kf.Hk = zeros(6,19);case psinsdef.kfinit246psinsdef.kffk = 24;  psinsdef.kfhk = 246;  psinsdef.kfplot = 24;[davp, imuerr, r0] = setvals(varargin);kf.Qt = diag([imuerr.web; imuerr.wdb; [1/Re;1/Re;1]*0*glv.mpsh; ...[1;1;1]*0*glv.dphpsh; [1;1;1]*0*glv.ugpsh; zeros(9,1)])^2;kf.Rk = diag(r0)^2;kf.Pxk = diag([davp; imuerr.eb; imuerr.db; imuerr.dKga(1:9)]*1.0)^2;kf.Hk = zeros(6,24);case psinsdef.kfinit331,psinsdef.kffk = 33;  psinsdef.kfhk = 331;  psinsdef.kfplot = 33;[davp, imuerr, r0] = setvals(varargin);kf.Qt = diag([imuerr.web; imuerr.wdb; zeros(9+15+3,1)])^2;kf.Rk = diag(r0)^2;kf.Pxk = diag([davp; imuerr.eb; imuerr.db; imuerr.dKga; imuerr.KA2])^2;kf.Hk = kfhk(ins);kf.xtau(1:psinsdef.kffk,1) = 0;case psinsdef.kfinit346,psinsdef.kffk = 34;  psinsdef.kfhk = 346;  psinsdef.kfplot = 34;[davp, imuerr, lever, dT, r0] = setvals(varargin);kf.Qt = diag([imuerr.web; imuerr.wdb; zeros(9+3+1+15,1)])^2;kf.Rk = diag(r0)^2;kf.Pxk = diag([davp; imuerr.eb; imuerr.db; lever; dT; imuerr.dKga])^2;kf.Hk = kfhk(ins);kf.xtau(1:psinsdef.kffk,1) = 0;case psinsdef.kfinit376,psinsdef.kffk = 37;  psinsdef.kfhk = 376;  psinsdef.kfplot = 37;[davp, imuerr, lever, dT, r0] = setvals(varargin);kf.Qt = diag([imuerr.web; imuerr.wdb; zeros(9+3+1+15+3,1)])^2;kf.Rk = diag(r0)^2;kf.Pxk = diag([davp; imuerr.eb; imuerr.db; lever; dT; imuerr.dKga; davp(4:6)]*10)^2;kf.Hk = kfhk(ins);kf.xtau(1:psinsdef.kffk,1) = 0;otherwise,kf = feval(psinsdef.typestr, psinsdef.kfinittag, [{ins},varargin]);
end
kf = kfinit0(kf, nts);

1686966838583

五、数据导入、转换

  • 二进制(纯double型)格式文件,使用binfile函数,这对导入C语言生成的数据文件快速方便;或者可参照binfile,使用fread自行编程导入特定格式的二进制文件;
  • 文本文件/或.mat格式文件,使用Matlab的loadimportdata函数;mat是MATLAB专用的数据文件,有压缩,很方便MATLAB之间存数据,但C语言中没法读。
  • 特殊格式的 PSINS-IMU/AVP 文件,可用imufileavpfile等函数。

从文件直接导入 Matlab 工作空间的数据通常是一个二维数组,其各列顺序及量纲单位不一定符合 PSINS 的习惯,需再进行数据提取和转换:

  • 使用imuidx提取 IMU 数据并进行单位转换,陀螺为角增量、加表为速度增量;如需要,还可借助于imurfu函数将 IMU 转换至右-前-上坐标系;
  • 使用avpidx提取 AVP 数据并进行单位转换,结果姿态/纬经为弧度、方位角北偏西为正;
  • 使用gpsidx提取GNSS速度/定位数据并进行单位转换,纬经度为弧度;通常GNSS的频率低于IMU频率,为删除重复数据行可调用norep函数;为删除数据为0行可调用no0函数;
  • 使用tshiftadddt函数可将数据的起始时间转换至指定的相对时间。一般用相对时间而不用周内秒,周内秒数值太大了,看着不方便。

参考test_IMUAVPGPS_extract_trans.m脚本文件,代码和效果图如下:

dd = binfile('imuavpgps.bin', 22);
open dd;
imu = imurfu(imuidx(dd, [1:6,22],glv.dps,glv.g0,trj.ts),'frd');
avp = avpidx(dd,[7:12,14,13,15,22],1,1);
gps = gpsidx(dd,[17,16,-18,20,19,21,22],1);
[imu,avp,gps] = tshift(imu,avp,gps,10);

1686712790301

六、绘图显示

1、绘图辅助函数

  • myfig:创建图窗,有两种用法:

    • myfig()myfig('图窗名')myfig('图窗名','纵坐标标签'):调用myfigure创建一个画图窗口,绘制白底全屏图(MATLAB直接画是灰底没全屏的),传回图窗句柄,可传入图窗名。当第一个参数是字符串时,第二个参数不起作用。
    • myfig('绘图数据','纵坐标标签'):直接调用myfigureplotxygo绘图。
    function h = myfig(namestr, ylb)if ~exist('namestr','var')h0 = myfigure;else% 如果传入第一个参数是用于绘图的数据,第二个参数是纵坐标标签,直接plot、xygo绘图if ~ischar(namestr)  % myfig(data, ylabel); if nargin<2, ylb='val'; endmyfig; plot(namestr); xygo(ylb);return;endh = myfigure(namestr);  endif nargout==1   % 如果要获取返回值,传回图窗句柄h = h0;end
    
    function h = myfigure(namestr)scrsz = get(0,'ScreenSize');  % scrsz = [left, bottom, width, height] 获取屏幕分辨率scrsz = [0.01*scrsz(3), 0.05*scrsz(4), 0.95*scrsz(3), 0.93*scrsz(4)];
    % 	figure('Position',scrsz);if ~exist('namestr','var')namestr = 'PSINS Toolbox';endh0 = figure('OuterPosition',scrsz, 'Name',namestr, 'Color','White');% set(gcf, 'Color','White');if nargout==1   % 如果要获取返回值,传回图窗句柄h = h0;end
    
  • xygo:启用网格(grid on)、给出坐标轴横纵标签(特殊标识由labeldef函数给出)。有三种用法:

    • xygo():默认纵轴是 value,默认横轴是时间 t
    • xygo('纵轴标签'):传入纵轴标签,默认横轴是时间 t
    • xygo('横轴标签','纵轴标签'):传入横轴标签、纵轴标签
    function xygo(xtext, ytext)% 如果没传入参数,默认纵轴是 value,默认横轴是时间 tif nargin==0 % xygo  ytext = 'value';xtext = labeldef('t');end% 如果传入一个参数,其做为纵轴标签,默认横轴是时间 tif nargin==1 % xygo(ytext)  ytext = xtext;xtext = labeldef('t');end% 如果传入两个参数,作为横轴、纵轴xlabel(labeldef(xtext));ylabel(labeldef(ytext));grid on;  hold on;
    
  • labeldef:定义简化标签精以简代码,调用此函数可以将简化标签转为完整标签。其中specl_string结构体存着简化标签与完整标签的对应关系。如果传入的是t,根据所选时间刻度选择合适的时间单位。

    function stext = labeldef(stext)global glvglobal specl_stringif isempty(specl_string)% 标签对应结构体,第一列为简洁标签,第二列为对应的完整形式   specl_string = {...  % string cell't/s'    '\itt \rm / s';'t/m'    '\itt \rm / min';'t/h'    '\itt \rm / h';'t/d'    '\itt \rm / d';'phi',   '\it\phi\rm / ( \prime )';'phiE',  '\it\phi\rm_E / ( \prime\prime )';'phiN',  '\it\phi\rm_N / ( \prime\prime )';'phiU',  '\it\phi\rm_U / ( \prime )';'phiEN', '\it\phi\rm_E,\it\phi\rm_N / ( \prime\prime )';'phix',  '\it\phi_x\rm / ( \circ )';'phiy',  '\it\phi_y\rm / ( \circ )';'phiz',  '\it\phi_z\rm / ( \circ )';'phixy', '\it\phi _{x,y}\rm / ( \circ )';'mu',    '\it\mu \rm / ( \prime )';'mux',   '\it\mu_x \rm / ( \prime )';'muy',   '\it\mu_y \rm / ( \prime )';'muz',   '\it\mu_z \rm / ( \prime )';'theta', '\it\theta \rm / ( \prime )';'dVEN',  '\it\delta V \rm_{E,N} / ( m/s )';'dVE',   '\delta\it V \rm_E / ( m/s )';'dVN',   '\delta\it V \rm_N / ( m/s )';'dVU',   '\delta\it V \rm_U / ( m/s )';'dV',    '\delta\it V\rm / ( m/s )';'pr',    '\it\theta , \gamma\rm / ( \circ )';'ry',    '\it\gamma , \psi\rm / ( \circ )';'p',     '\it\theta\rm / ( \circ )';'r',     '\it\gamma\rm / ( \circ )';'y',     '\it\psi\rm / ( \circ )';'att',   '\itAtt\rm / ( \circ )';'datt',  '\itdAtt\rm / ( \prime )';'VEN',   '\itV \rm_{E,N} / ( m/s )';'VE',   '\itV \rm_E / ( m/s )';'VN',   '\itV \rm_N / ( m/s )';'VU',    '\itV \rm_U / ( m/s )';'V',     '\itV\rm / ( m/s )';'Vx',    '\itVx\rm / ( m/s )';'Vy',    '\itVy\rm / ( m/s )';'Vz',    '\itVz\rm / ( m/s )';'dlat',  '\delta\it L\rm / m';'dlon',  '\delta\it \lambda\rm / m';'dH',    '\delta\it H\rm / m';'dP',    '\delta\it P\rm / m';'lat',   '\itL\rm / ( \circ )';'lon',   '\it\lambda\rm / ( \circ )';'hgt',   '\ith\rm / ( m )';'xyz',   'XYZ / ( m )';'est',   'East\rm / m';'nth',   'North\rm / m';'H',     '\itH\rm / m';'DP',    '\Delta\it P\rm / m';'ebyz',  '\it\epsilon _{y,z}\rm / ( (\circ)/h )';'eb',    '\it\epsilon\rm / ( (\circ)/h )';'en',    '\it\epsilon\rm / ( (\circ)/h )';'db',    '\it\nabla\rm / \mu\itg';'dKij',  '\delta\itKij\rm / (\prime\prime)';'dKii',  '\delta\itKii\rm / ppm';'Ka2',   'Ka2 / ug/g^2';'dbU',   '\it\nabla \rm_U / \mu\itg';'L',     '\itLever\rm / m';'dT',    '\delta\it T_{asyn}\rm / s';'dKgzz',   '\delta\it Kgzz\rm / ppm';'dKg',   '\delta\it Kg\rm / ppm';'dAg',   '\delta\it Ag\rm / ( \prime\prime )';'dKa',   '\delta\it Ka\rm / ppm';'dAa',   '\delta\it Aa\rm / ( \prime\prime )';'wx',    '\it\omega_x\rm / ( (\circ)/s )';'wy',    '\it\omega_y\rm / ( (\circ)/s )';'wz',    '\it\omega_z\rm / ( (\circ)/s )';'w',     '\it\omega\rm / ( (\circ)/s )';'wxdph',    '\it\omega_x\rm / ( (\circ)/h )';'wydph',    '\it\omega_y\rm / ( (\circ)/h )';'wzdph',    '\it\omega_z\rm / ( (\circ)/h )';'wdph',     '\it\omega\rm / ( (\circ)/h )';'fx',    '\itf_x\rm / \itg';'fy',    '\itf_y\rm / \itg';'fz',    '\itf_z\rm / \itg';'f',     '\itf\rm / \itg';'fxug',    '\itf_x\rm / u\itg';'fyug',    '\itf_y\rm / u\itg';'fzug',    '\itf_z\rm / u\itg';'fug',     '\itf\rm / u\itg';'Temp',  '\itT\rm / \circC';'frq',  '\itf\rm / Hz';'dinst', '\delta\it\theta , \rm\delta\it\psi\rm / ( \prime )';};end% 如果传入的是t,根据glv.tscale(end)里时间的尺度,选择合适的选择合适的时间单位if strcmp(stext,'t')==1switch glv.tscale(end)case 1, stext='t/s';case 60, stext='t/m';case 3600, stext='t/h';case 24*3600, stext='t/d';endend% 遍历上面定义的 specl_string 结构体,如果for k=1:length(specl_string)if strcmp(stext,specl_string(k,1))==1stext = specl_string{k,2};break;endend
    

2、传感器数据绘图

1686662436430

给传感器数据,直接画出上面的图,要写很多行代码,所以封装了一些函数:

  • imuplotimumeanplot:IMU/平滑绘图,陀螺单位deg/s,加表单位g

  • gpsplot:GNSS绘图,可同时包含速度和定位信息、或仅有定位信息。会做判断4列认为只有时间位置,7列认为时间位置速度

  • magplot:三轴地磁绘图,假设载体水平角为0,给出磁倾角/偏角

  • odplot/dvlplot:里程仪绘图(输入数据为路程增量,绘图显示为速度)

  • baroplot:气压高度绘图,画压力对应的高度

3、导航结果绘图

1686662506662

  • insplot:纯惯性导航结果AVP绘图,三个姿态、三个速度、三个位置,

    • 俯仰角、横滚角通常比方位角小,分开画会显示的全面一些。
    • 位置就是位置的增量
    • 速度是东北天三个方向,和模值
    • 二维轨迹图,用相对坐标
  • inserrplotavpcmpplot:导航误差

  • avpcmpplot:比较绘图;有参考基准时、或高精度惯导和低精度惯导、或GNSS和惯导

  • kfplotxpplot:Kalman滤波结果状态或均方差阵对角线元素绘图。

4、进度条函数

timebar:直观显示程序循环运行进度情况、在程序循环运行过程中如人为点击Cancel按钮则进度条则报错中断程序。循环里每一次都调用,返回调用的次数tk,参数:

  • tStep:每一步运行步数
  • tTotal:总步数
  • msgstr:进度条上要显示的字符串

1686661818391

七、SINS/GPS组合导航仿真举例

本篇只是举个仿真的例子,之后的博客再做细致的解读。

1、生成仿真轨迹

参考博客:PSINS源码阅读—test_SINS_trj、严恭敏老师PSINS工具箱解读——trjfile、关于PSINS运动轨迹仿真模块的理解和思考、PSINS工具箱中轨迹生成工具详细解析

参考书:严老师硕士论文第五章、捷联惯导与组合导航第8章

运行demo\test_SINS_trj.m脚本,生成仿真轨迹

glvs    % 主程序的第一行一般都是glvs,定义全局变量
ts = 0.1;       % sampling interval 采样时间
avp0 = [[0;0;0]; [0;0;0]; glv.pos0]; % init avp 设置avp初始参数
% trajectory segment setting 分段设置轨迹剖面参数,由一段段线拼接而成
% uniform:保持运动状态、accelerate:加速、coturnleft:左转、deaccelerate:减速
xxx = [];
seg = trjsegment(xxx, 'init',         0);				% 轨迹结构数组的初始化
seg = trjsegment(seg, 'uniform',      100);				% 保持上一状态100s
seg = trjsegment(seg, 'accelerate',   10, xxx, 1);	 	% 用1m/s2的速度加速10s
seg = trjsegment(seg, 'uniform',      100);				% 保持上一时刻状态100s
seg = trjsegment(seg, 'coturnleft',   45, 2, xxx, 4);	% 协调左转弯,先横滚方向左转4s,再整体转45s,最后横滚方向右转4s.考虑到了航向与横滚
seg = trjsegment(seg, 'uniform',      100);				% 保持上一个状态100s
seg = trjsegment(seg, 'coturnright',  10*5, 9, xxx, 4);	 % 协调右转弯,先横滚方向右转4s,再整体转50s,最后横滚方向左转4s.考虑到了航向与横滚	
seg = trjsegment(seg, 'uniform',      100);			   % 保持上一时刻状态100s
seg = trjsegment(seg, 'climb',        10, 2, xxx, 50);	% 向上爬坡10s
seg = trjsegment(seg, 'uniform',      100);			   % 保持上一时刻状态100s	
seg = trjsegment(seg, 'descent',      10, 2, xxx, 50);	% 下降10s
seg = trjsegment(seg, 'uniform',      100);			   % 保持上一时刻状态100s
seg = trjsegment(seg, 'deaccelerate', 5,  xxx, 2);	    % 减速5s
seg = trjsegment(seg, 'uniform',      100);			   % 保持上一时刻状态100s
% generate, save & plot
trj = trjsimu(avp0, seg.wat, ts, 1);    
trjfile('trj10ms.mat', trj);
insplot(trj.avp);
imuplot(trj.imu);

轨迹参数图

1686882800723

IMU参数图:左边是三个陀螺的输出,右边是三个比力的输出

1686882966570

2、纯惯导仿真

运行demo\test_SINS.m脚本,纯惯导仿真

glvs
trj = trjfile('trj10ms.mat');  % 读轨迹
%% error setting  设置惯性器件误差和avp参数
imuerr = imuerrset(0.01, 100, 0.001, 10);  % 陀螺漂移、零篇、加表随机游走、速度随机游走
imu = imuadderr(trj.imu, imuerr);       % 往轨迹IMU中加上一步设置的误差
davp0 = avperrset([0.5;0.5;5], 0.1, [10;10;10]);  % 失准角误差0.5/0.5/5、速度误差0.1m/s、位置误差等10m
avp00 = avpadderr(trj.avp0, davp0); 
trj = bhsimu(trj, 1, 10, 3, trj.ts);    % 气压高度计
%% pure inertial navigation & error plot  纯惯导解算作图
avp = inspure(imu, avp00, trj.bh, 1);  
% avp = inspure(imu, avp00, 'f', 1);
avperr = avpcmpplot(trj.avp, avp);      % 存惯导仿真结果与轨迹仿真结果比较作图

纯惯导仿真avp:可以看出到最后速度都不延北方向了

1686885017613

与真实轨迹比误差图

1686885420601

3、SINS-GPS仿真

参考:严恭敏老师PSINS工具箱解读——test_SINS_GPS_153

运行demo\test_SINS_GPS_153.m脚本,组合导航仿真,15维状态+3维量测、15维状态:三个失准角、三个速度误差、三个位置误差、三个陀螺漂移常值、三个加计零偏常值

glvs
psinstypedef(153);                              % 全局变量,主要设置状态转移矩阵的维数、量测矩阵的维数和画图
trj = trjfile('trj10ms.mat');                   % 加载轨迹数据
% initial settings
[nn, ts, nts] = nnts(2, trj.ts);                % 子样数和采样间隔
imuerr = imuerrset(0.03, 100, 0.001, 5);        % imu误差,分别为陀螺常值零偏、加速度计常值零偏、角度随机游走和速度随机游走,请参考imuerrset函数解读
imu = imuadderr(trj.imu, imuerr);               % 对参考imu数据添加误差生成实际imu测量值,请参考imuadderr解读
davp0 = avperrset([0.5;-0.5;20], 0.1, [1;1;3]); % 初始姿态、速度和位置误差,注意姿态的单位为:分,请参考avperrset函数解读
ins = insinit(avpadderr(trj.avp0,davp0), ts);   % 对参考初始姿态、速度和位置添加误差,并进行惯导初始化用于后面更新
% KF filter
rk = poserrset([1;1;3]);                        % 位置量测噪声
kf = kfinit(ins, davp0, imuerr, rk);            % 卡尔曼滤波器初始化
kf.Pmin = [avperrset(0.01,1e-4,0.1); gabias(1e-3, [1,10])].^2;          % 方差阵最小值
kf.pconstrain=1;                                                        % 方差阵上下限约束条件,1:表示约束
len = length(imu); [avp, xkpk] = prealloc(fix(len/nn), 10, 2*kf.n+1);   % 对变量预先分配内存
timebar(nn, len, '15-state SINS/GPS Simulation.');   % 程序运行的进度条
ki = 1; % 量测更新的计数器
for k=1:nn:len-nn+1k1 = k+nn-1;  wvm = imu(k:k1,1:6);  t = imu(k1,end);  % 角度增量和速度增量,采样时刻ins = insupdate(ins, wvm);              % 惯导更新kf.Phikk_1 = kffk(ins);                 % 计算状态转移矩阵kf = kfupdate(kf);                      % 卡尔曼滤波器预测更新if mod(t,1)==0  % 判断是否有GNSS位置量测,此处认为GNSS为整秒量测,mod为求余数函数posGPS = trj.avp(k1,7:9)' + davp0(7:9).*randn(3,1); % GPS pos simulation with some white noise 模拟GNSS位置量测值kf = kfupdate(kf, ins.pos-posGPS, 'M');             % 卡尔曼滤波状态反馈[kf, ins] = kffeedback(kf, ins, 1, 'avp');          % 卡尔曼滤波状态反馈avp(ki,:) = [ins.avp', t];                          % 姿态、速度、位置和时间xkpk(ki,:) = [kf.xk; diag(kf.Pxk); t]';  ki = ki+1; % 反馈后的剩余状态、方差阵和时间endtimebar;    % 
end
avp(ki:end,:) = [];  xkpk(ki:end,:) = []; % 释放空间
% show results
insplot(avp);                       % 调用 insplot 画姿态、速度和位置
avperr = avpcmpplot(trj.avp, avp);  % 调用 avpcmpplot 画组合导航计算的avp与参考avp的差值
kfplot(xkpk, avperr, imuerr);       % 调用 kfplot 画avp误差、imu误差、反馈后的剩余状态和方差阵

组合导航avp仿真图:与真实轨迹很接近了,最后的轨迹指北

1686886298659

与真实轨迹相比误差图:误差都逐渐收敛

1686886391394

Kalman滤波图:有反馈的会逐渐趋于0,无反馈的趋于常值(与设置的基本吻合),明显能看出天向陀螺仪漂移估计的不如水平陀螺仪漂移

1686886513951

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/144103.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据集笔记:2015上海地铁一卡通数据

数据地址&#xff1a;上海地铁数据_免费高速下载|百度网盘-分享无限制 (baidu.com) 数据介绍 上海2015年几天的地铁一卡通出入站信息 卡号、交易日期、交易时间、公交线路/地铁站点中文名称、行业名称(公交、地铁、出租、轮渡、PR停车场)、交易金额、交易性质(非优惠、优惠、…

No139.精选前端面试题,享受每天的挑战和学习

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…

RNN模型与NLP应用(1/9):数据处理基础Data Processing Basics

文章目录 处理分类特征把分类特征转化为数值特征应用one-hot编码indice要从1开始而不能从0开始数据处理为什么使用one-hot向量 处理文本数据Step1&#xff1a;将文本分割成单词Step2&#xff1a;计算单词的频度按频度递减的方式排序 Step3&#xff1a;One-Hot编码 处理分类特征…

UE5 ChaosVehicles载具研究

一、基本组成 载具Actor类名称&#xff1a;WheeledVehiclePawn Actor最原始的结构 官方增加了两个摇臂相机&#xff0c;可以像驾驶游戏那样切换多机位、旋转观察 选择骨骼网格体、动画蓝图类、开启物理模拟 二、SportsCar_Pawn 角阻尼&#xff1a;物体旋转的阻力。数值越大…

前端架构师之02_ES6_高级

1 类和继承 1.1 class类 JavaScript 语言中&#xff0c;生成实例对象的传统方法是通过构造函数。 // ES5 创建对象 // 创建一个类&#xff0c;用户名 密码 function User(name,pass){// 添加属性this.name name;this.pass pass; } // 用 原型 添加方法 User.prototype.sho…

Docker下如何构建包含延迟插件的RabbitMQ镜像

&#x1f468;&#x1f3fb;‍&#x1f4bb; 热爱摄影的程序员 &#x1f468;&#x1f3fb;‍&#x1f3a8; 喜欢编码的设计师 &#x1f9d5;&#x1f3fb; 擅长设计的剪辑师 &#x1f9d1;&#x1f3fb;‍&#x1f3eb; 一位高冷无情的编码爱好者 大家好&#xff0c;我是 DevO…

FIPS 140简介

FIPS 140(Federal Information Processing Standards Publication 140)是美国联邦政府颁布的一系列密码学标准,用于评估和验证安全模块(如加密模块)的安全性。FIPS 140标准制定了一系列安全要求,以确保加密模块能够提供足够的安全性,以保护敏感数据。 与AES的关系是,A…

UE5 虚幻引擎 如何使用构造脚本(Construction Script)? 构造脚本的奥秘!

目录 1 构造脚本&#xff08;Construction Script&#xff09;1.1 介绍1.2 案例1&#xff1a;利用样条组件程序化生成树木1.2 案例2&#xff1a;利用样条组件和样条网格体组件程序化生成道路 1 构造脚本&#xff08;Construction Script&#xff09; 1.1 介绍 问题&#xff1a…

3D孪生场景搭建:模型阵列摆放

阵列摆放概念 阵列摆放是指将物体、设备或元件按照一定的规则和间距排列组合的方式。在工程和科学领域中&#xff0c;阵列式摆放常常用于优化空间利用、提高效率或增强性能。 阵列摆放通常需要考虑间距、角度、方向、对称性等因素&#xff0c;以满足特定的要求和设计目标。不同…

江西广电会展集团总经理李悦一行莅临拓世科技集团调研参观,科技璀璨AIGC掀新潮

在江西这片充满活力的土地上&#xff0c;数字经济如潮水般涌动&#xff0c;会展文化与科技的完美结合&#xff0c;正如新时代的璀璨繁星照亮夜空&#xff0c;更预示着一场AIGC创新的壮丽篇章即将展开。作为拓世科技集团的老朋友&#xff0c;江西广电多位领导多次莅临拓世科技集…

Elasticsearch:与多个 PDF 聊天 | LangChain Python 应用教程(免费 LLMs 和嵌入)

在本博客中&#xff0c;你将学习创建一个 LangChain 应用程序&#xff0c;以使用 ChatGPT API 和 Huggingface 语言模型与多个 PDF 文件聊天。 如上所示&#xff0c;我们在最最左边摄入 PDF 文件&#xff0c;并它们连成一起&#xff0c;并分为不同的 chunks。我们可以通过使用 …

项目集成七牛云存储sdk

以PHP为例 第一步&#xff1a;下载sdk PHP SDK_SDK 下载_对象存储 - 七牛开发者中心 sdk下载成功之后&#xff0c;将sdk放入项目中&#xff0c;目录选择以自己项目实际情况而定。 注意&#xff1a;在examples目录中有各种上传文件的参考示例&#xff0c;这里我们主要参考的是…

如何注册一个 DA 为 10 的高价值老域名

众所周知&#xff0c;由于域名存在唯一性&#xff0c;随着人们注册的越多&#xff0c;好域名也变得越来越少&#xff0c;渐渐成为稀缺的网络资源。这个时候要想拥有好的域名&#xff0c;抢注优质老域名就成了广大米友的路径之一。 优质的高价值域名都有一个特点&#xff0c;那…

MySQL数据库入门到精通1--基础篇(MySQL概述,SQL)

1. MySQL概述 1.1 数据库相关概念 目前主流的关系型数据库管理系统&#xff1a; Oracle&#xff1a;大型的收费数据库&#xff0c;Oracle公司产品&#xff0c;价格昂贵。 MySQL&#xff1a;开源免费的中小型数据库&#xff0c;后来Sun公司收购了MySQL&#xff0c;而Oracle又收…

如何快速学习AdsPower RPA(2)——中级、高级部分

Tool哥继续给大家分享快速学习AdsPower RPA的方法。上一篇在这里&#xff0c;还没看过的小伙伴赶快补课去&#xff1a;如何快速学习AdsPower RPA&#xff08;1&#xff09;——简单、进阶部分 能进入到中级、高级阶段的学习&#xff0c;说明你自学能力超强&#xff01;只要跟着…

创建型设计模式——工厂模式

摘要 本博文主要介绍软件设计模式中工厂模式&#xff0c;其中工厂设计模式的扩展为简单工厂(Simple Factory)、工厂方法(Factory Method)、抽象工厂(Abstract Factory)三种。 一、简单工厂(Simple Factory) 主要分析设计模式 - 简单工厂(Simple Factory)&#xff0c;它把实例…

微信小程序,动态设置三级联动, 省市区街道

1.第一步 传parentId0 查询省份 2.第二步 选择省份,传pathId选择省份的pathId, 不传parentId,会查询出 市/县数据 3.第三步 根据选择县的parentId 查询街道数据,传parentId选择的县id 4.选择结果回显 显示所选择的 path 以/分割 取最后一级<van-dropdown-menu…

Pygame中监控鼠标动作的方法

在Pygame中监控键盘按键的方法_pygame获取键盘输入-CSDN博客中提到&#xff0c;通过在while True循环中获取队列中事件的方法监控键盘动作。监控鼠标动作的方法与监控键盘动作的方法相同。 相关连接1 队列与事件的相关知识&#xff0c;请参考 Pygame中监控键盘按键的方法_pyg…

【Servlet】Servlet API 详解

Servlet API 详解 一. HttpServlet1. 核心方法2. 代码示例: 处理 GET 请求3. 关于乱码问题4. 代码示例: 处理 POST 请求 二. HttpServletRequest1. 核心方法2. 代码示例: 打印请求信息3. 代码示例: 获取 GET 请求中的参数4. 代码示例: 获取 POST 请求中的参数(1)5. 代码示例: 获…

基于Java实现的仓库管理系统设计与实现(源码+lw+部署文档+讲解等)

文章目录 前言功能介绍&#xff1a;具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序&#xff08;小蔡coding&#xff09;有保障的售后福利 代码参考源码获取 前言 &#x1f497;博主介绍&#xff1a;✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计划导…