【图像处理】SIFT角点特征提取原理

一、说明

        提起在OpenCV中的特征点提取,可以列出Harris,可以使用SIFT算法或SURF算法来检测图像中的角特征点。本篇围绕sift的特征点提取,只是管中窥豹,而更多的特征点算法有:

  • Harris & Stephens / Shi–Tomasi 角点检测算法
  • Förstner角点检测器;
  • 多尺度 Harris 算子
  • 水平曲线曲率法
  • 高斯的拉普拉斯、高斯的差异和 Hessian 尺度空间兴趣点的行列式
  • 基于 Lindeberg Hessian 特征强度度量的尺度空间兴趣点
  • 仿射自适应兴趣点算子
  • Wang 和 Brady 角点检测算法
  • SUSAN 角点检测器
  • Trajkovic 和 Hedley 角点检测器
  • 基于 AST 的特征检测器
  • 检测器自动合成
  • 时空兴趣点检测器

二、快速(来自加速段测试的功能)

        FAST是一种用于识别图像中的兴趣点的算法。兴趣点具有较高的本地信息含量,理想情况下,它们应该在不同图像之间可重复。FAST算法工作背后的原因是开发一种兴趣点检测器,用于实时帧速率应用,如移动机器人上的SLAM,这些应用的计算资源有限。

        算法如下:

  • 在强度IP的图像中选择一个像素“p‟”。这是要标识为兴趣点的像素。
  • 设置阈值强度值 T。
  • 考虑围绕像素 p 的 16 像素圆圈。
  • 如果需要将 16 个像素检测为兴趣点,则 <> 个连续像素中的“N”个连续像素需要高于或低于值 T。
  • 为了使算法快速,首先将圆的像素 1、5、9 和 13 的强度与 IP 进行比较。从上图中可以明显看出,这四个像素中至少有三个应该满足阈值标准,以便存在兴趣点。
  • 如果四个像素值中的至少三个 — I1 、I5 、I9 I13 不高于或低于 IP + T,则 P 不是兴趣点(角)。在这种情况下,我们拒绝像素 p 作为可能的兴趣点。否则,如果至少三个像素高于或低于 Ip + T,则检查所有 16 个像素。
  • 对图像中的所有像素重复此过程。

2.1 机器学习方法

  • 选择一组图像进行训练,运行FAST算法检测兴趣点

  • 对于每个像素“p‟”,将其周围的 16 个像素存储为向量,并对所有像素重复此操作
  • 现在这是向量 P,它包含所有用于训练的数据。
  • 向量中的每个值都可以采用三种状态。比 p 暗,比 p 亮或与 p 相似。
  • 根据状态的不同,整个向量P将细分为三个子集,Pd,Ps,Pb。
  • 定义一个变量 Kp,如果 p 是兴趣点,则为 true,如果 p 不是兴趣点,则为 false。
  • 使用 ID3 算法(决策树分类器)使用变量 Kp 查询每个子集以获取有关真实类的知识。
  • ID3算法的工作原理是熵最小化。以这样一种方式查询 16 像素,以便以最少的查询数找到真正的类(兴趣点或非兴趣点)。或者换句话说,选择像素x,它具有有关像素的最多信息

  • 递归地将此熵最小化应用于所有三个子集。
  • 当子集的熵为零时终止进程。
  • 决策树学习的这种查询顺序也可用于在其他图像中更快地检测。

2.2 用于移除相邻拐角的非最大抑制

        检测彼此相邻的多个兴趣点是该算法初始版本的其他问题之一。这可以通过在检测到兴趣点后应用非最大抑制来处理。我们为每个检测到的点计算一个评分函数 V。评分函数定义为:“连续弧中像素与中心像素之间的绝对差值之和”。我们比较两个相邻的值并丢弃较低的值。

三、简介 ( 二进制鲁棒独立基本特征 )

        BRIEF 提供了一个快捷方式,可以直接查找二进制字符串而无需查找描述符。它采用平滑的图像补丁,并以独特的方式选择一组nd(x,y)位置对(在论文中解释)。然后对这些位置对进行一些像素强度比较。例如,设第一个位置对为 p 和 q。如果 I(p) <I(q) ,则其结果为 1,否则为 0。这适用于所有 nd 位置对以获取 nd 维位串。此 nd 可以是 128、256 或 512。因此,一旦我们得到这个,我们就可以使用汉明距离来匹配这些描述符。

OpenCV中的简介

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('simple.jpg',0)# Initiate STAR detector
star = cv2.FeatureDetector_create("STAR")# Initiate BRIEF extractor
brief = cv2.DescriptorExtractor_create("BRIEF")# find the keypoints with STAR
kp = star.detect(img,None)# compute the descriptors with BRIEF
kp, des = brief.compute(img, kp)print brief.getInt('bytes')
print des.shape 

四、SIFT(尺度不变特征变换)

        它是一种检测图像中突出、稳定的特征点的技术。对于每个这样的点,它都提供了一组不变的旋转和缩放特征。

        SIFT算法有四个步骤:

•确定显著特征点(也称为关键点)的大致位置和比例

•优化其位置和规模

•确定每个关键点的方向。

•确定每个关键点的描述符。

五、大致位置

        SIFT算法使用高斯差,这是LoG的近似值。此过程针对高斯金字塔中图像的不同八度音阶完成。一旦找到此DoG,就会在比例和空间上搜索图像的局部极值。这基本上意味着关键点在该比例中得到最好的表示。

5.1 关键点本地化

        一旦找到潜在的关键点位置,就必须对其进行优化以获得更准确的结果。他们使用尺度空间的泰勒级数展开来获得更准确的极值位置,如果该极值的强度小于阈值(根据论文为0.03),则被拒绝。此阈值在 OpenCV 中称为 contrastThreshold

        DoG对边缘的响应更高,因此也需要去除边缘。为此,使用了类似于哈里斯角检测器的概念。他们使用2x2的Hessian矩阵(H)来计算主曲率。所以这里我们使用一个简单的函数:如果这个比率大于阈值,则该关键点将被丢弃。因此,它消除了任何低对比度的关键点和边缘关键点,剩下的就是强烈的兴趣点。

5.2 指定方向

        现在为每个关键点分配一个方向,以实现图像旋转的不变性。根据比例在关键点位置周围选取邻域,并在该区域计算梯度大小和方向。将创建具有 36 个箱(覆盖 360 度)的方向直方图。它由梯度幅度和高斯加权圆形窗口加权,σ等于关键点刻度的 1.5 倍。取直方图中的最高峰,任何高于 80% 的峰值也被认为是计算方向的。它创建具有相同位置和比例但方向不同的关键点。它有助于匹配的稳定性。

5.3 每个关键点的描述符

        现在,关键点描述符已创建。在关键点周围拍摄一个 16x16 的邻域。它分为 16 个 4x4 大小的子块。对于每个子块,创建一个 8 箱方向的直方图。它表示为向量以形成关键点描述符。除此之外,还采取了一些措施来实现对照明变化、旋转等的鲁棒性。

六、应用:匹配SIFT描述符

        通过识别其最近的邻居来匹配两个图像之间的关键点。但在某些情况下,第二个最接近的匹配可能非常接近第一个。这可能是由于噪音或其他一些原因而发生的。在这种情况下,将采用最近距离与第二近距离的比率。如果大于 0.8,则拒绝它们。它消除了大约 90% 的错误匹配,而只丢弃了 5% 的正确匹配。

        用于创建全景视图的 SIFT

OpenCV 中的 SIFT

import cv2
import numpy as npimg = cv2.imread('home.jpg')
gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)sift = cv2.SIFT()
kp = sift.detect(gray,None)img=cv2.drawKeypoints(gray,kp)cv2.imwrite('sift_keypoints.jpg',img) 

七、SURF(加速 - 强大的功能)

        获取 SURF 描述符分为两个阶段,首先检测 SURF 点,然后在 SURF 点提取描述符。SURF点的检测利用了尺度空间理论。为了检测SURF点,使用快速黑森矩阵。黑森矩阵的行列式用于决定是否可以选择一个点作为兴趣点。在图像 I 中,点 X 处的 Hessian 矩阵由下式定义:

        在对图像执行卷积之前,需要对高斯二阶导数进行离散化。Dxx、Dyy 和 Dxy 表示框滤波器与图像的卷积。这些近似的二阶高斯导数计算是通过使用积分图像快速进行的。

        通过更改框过滤器的大小来分析图像的比例空间。通常,Box 滤波器以默认大小 9x9 开头,对应于 σ= 1.2 的高斯导数。过滤器大小稍后会放大到 15x15、21x21、27x27 等大小。在每个尺度上计算黑森矩阵的近似行列式,并应用 333 个邻域中的非极大抑制来求最大值。SURF 点的位置和比例 s 是用最大值获得的。

        获得的SURF点的方向使用Haar小波响应进行分配。在 SURF 点附近,即半径 6s 以内,在 x 和 y 方向上计算哈尔小波响应。使用这些响应,确定主要方向。在主导方向上,构建了一个以SURF点为中心的20s大小的正方形。这分为44个子区域。在这些子区域中,在55个规则放置的采样点处计算水平和垂直Haar小波响应dx和dy。这些响应以特定的区间相加,得到 Σdx , Σdy。此外,这些响应的绝对值以特定区间求和,得到 Σ|dx|, Σ|dy|.使用这些值,为每个子区域构造一个 4 维特征向量 V = (Σdx, Σdy, Σ|dx| , Σ|dy|)。因此,每个提取的 SURF 点都与一个 4x(4x4) 描述符相关联,该描述符是一个 64 维描述符。此 64 维描述符用于执行匹配操作。

八、ORB (定向快速和旋转简报)

        ORB基本上是FAST关键点检测器和BRIEF描述符的融合,并进行了许多修改以增强性能。首先,它使用 FAST 查找关键点,然后应用 Harris 角度量来查找其中的前 N 个点。它还使用金字塔来生成多尺度特征。

ORB的算法:

        它计算角位于中心的修补程序的强度加权质心。矢量从此角点到质心的方向给出了方向。为了提高旋转不变性,用 x 和 y 计算弯矩,它们应该在半径为 r 的圆形区域中,其中 r 是补丁的大小。现在对于描述符,ORB 使用 BRIEF 描述符。BRIEF是旋转不变的,因此ORB根据关键点的方向来操纵BRIEF。对于位置 xi,yi 处的 n 个二进制测试的任何特征集,定义一个 2 x n 矩阵 S,其中包含这些像素的坐标。然后利用贴片的方向θ,找到它的旋转矩阵,旋转S得到转向(旋转)版本Sθ。

        随着轮换的不变,BRIEF变得更加分散。ORB 在所有可能的二元检验中运行贪婪搜索,以找到方差高且均值接近 0.5 且不相关的检验。结果称为 rBRIEF。对于描述符匹配,使用了在传统LSH基础上改进的多探针LSH。

OpenCV 中的 ORB:

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('simple.jpg',0)# Initiate STAR detector
orb = cv2.ORB()# find the keypoints with ORB
kp = orb.detect(img,None)# compute the descriptors with ORB
kp, des = orb.compute(img, kp)# draw only keypoints location,not size and orientation
img2 = cv2.drawKeypoints(img,kp,color=(0,255,0), flags=0)
plt.imshow(img2),plt.show() 

使用 ORB 进行图像匹配

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/144819.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C进阶--数据的存储

⚙ 1. 数据类型介绍 1.1基本内置类型 ⭕ 整形&#xff1a; char(char又叫短整型)unsigned charsigned charshortunsigned short[int]signed short [int]intunsigned intsigned intlongunsigned long [int]signed long [int] ⭕ 浮点数&#xff1a; float&#xff08;单精度浮…

Idea引入thymeleaf失败解决方法

报错 Whitelabel Error Page This application has no explicit mapping for /error, so you are seeing this as a fallback.Fri Sep 29 09:42:00 CST 2023 There was an unexpected error (typeNot Found, status404). 原因&#xff1a;html没有使用thymeleaf 首先要引入…

java mongodb 并表 group 查询 Bson

对mongodb的使用中&#xff0c;需要将发生额表occr期初表open表&#xff0c;进行union的并表操作后&#xff0c;再进行group&#xff0c;sum&#xff0c;排序&#xff0c;分页操作。 查询了一番后&#xff0c;mongodb4.4版本后&#xff0c;新增了一个管道符&#xff0c;$union…

使用Vue、ElementUI实现登录注册,配置axios全局设置,解决CORS跨域问题

目录 引言 什么是ElementUI&#xff1f; 步骤1&#xff1a;创建Vue组件用于用户登录和注册 1. 基于SPA项目完成登录注册 在SPA项目中添加elementui依赖 在main.js中添加elementui模块 创建用户登录注册组件 配置路由 修改项目端口并启动项目 静态页面展示图 步骤2&#x…

【文献】TOF标定 Time-of-Flight Sensor Calibration for a Color and Depth Camera Pair

文章目录 Article info.Introduction处理TOF误差Take home messagesResourcesIDEAS Article info. Time-of-Flight Sensor Calibration for a Color and Depth Camera Pair IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 7, JULY 2015 Intr…

FreeRTOS入门教程(空闲任务和钩子函数及任务调度算法)

文章目录 前言一、空闲任务概念二、钩子函数概念三、任务调度算法四、任务调度算法实验1.实验代码2.是否抢占3.时间片是否轮转4.空闲任务让步 总结 前言 本篇文章将带大家学习一下什么是空闲任务以及钩子函数&#xff0c;以及学习FreeRTOS中的任务调度算法&#xff0c;了解在F…

京东大型API网关实践之路

概述 1、背景 京东作为电商平台&#xff0c;近几年用户、业务持续增长&#xff0c;访问量持续上升&#xff0c;随着这些业务的发展&#xff0c;API网关应运而生。 API网关&#xff0c;就是为了解放客户端与服务端而存在的。对于客户端&#xff0c;使开放给客户端的接口标准统…

docker系列(9) - docker-compose

文章目录 9. compose编排9.1 介绍9.2 安装9.3 compose常用命令9.4 实战Springboot部署9.4.1 准备组件配置文件9.4.1.1 redis的配置文件9.4.1.2 MySQL的配置文件9.4.1.3 SpringBoot打包文件 9.4.2 准备docker-compose.yml9.4.3 启动服务9.4.4 测试验证 9.5 实战ElasticsearchKib…

华为智能高校出口安全解决方案(2)

本文承接&#xff1a; https://qiuhualin.blog.csdn.net/article/details/131475315?spm1001.2014.3001.5502 重点讲解华为智能高校出口安全解决方案的基础网络安全&业务部署与优化的部署流程。 华为智能高校出口安全解决方案&#xff08;2&#xff09; 课程地址基础网络…

正在等待操作系统重新启动。 请重新启动计算机以安装autocad 2024。

正在等待操作系统重新启动。 请重新启动计算机以安装autocad 2024。 这是刚启动Autodesk 2024产品就弹出的弹窗&#xff0c;重启之后启动还是有这个 一直阻止安装程序运行 出现问题的原因是安装包存在问题 使用正确的安装包即可解决这个问题 需要的朋友查看图片或者评伦取…

手动实现Transformer

Transformer和BERT可谓是LLM的基础模型&#xff0c;彻底搞懂极其必要。Transformer最初设想是作为文本翻译模型使用的&#xff0c;而BERT模型构建使用了Transformer的部分组件&#xff0c;如果理解了Transformer&#xff0c;则能很轻松地理解BERT。 一.Transformer模型架构 1…

Qt扩展-QCustomPlot 简介及配置

QCustomPlot 简介及配置 一、概述二、安装教程三、帮助文档的集成 一、概述 QCustomPlot是一个用于绘图和数据可视化的Qt 控件。它没有进一步的依赖关系&#xff0c;并且有良好的文档记录。这个绘图库专注于制作好看的、发布质量的2D绘图、图形和图表&#xff0c;以及为实时可…

洗衣行业在线预约小程序系统源码搭建 支持直播功能+在线预约下单+上门取件

目前&#xff0c;人们对生活品质的追求不断提高&#xff0c;但生活节奏却也不断加快。对品质的追求遇到了忙碌的生活节奏&#xff0c;人们更渴望以最简单、便捷的方式达到追求品质的目的。同时&#xff0c;由于线上支付的普及&#xff0c;大家更希望足不出户就可以解决自己生活…

DevSecOps 将会嵌入 DevOps

通常人们在一个项目行将结束时才会考虑到安全&#xff0c;这么做会导致很多问题&#xff1b;将安全融入到DevOps的工作流中已产生了积极结果。 DevSecOps&#xff1a;安全正当时 一直以来&#xff0c;开发人员在构建软件时认为功能需求优先于安全。虽然安全编码实践起着重要作…

react.js在visual code 下的hello World

想学习reacr.js &#xff0c;就开始做一个hello world。 我的环境是visual code &#xff0c;所以我找这个环境下的例子。参照&#xff1a; https://code.visualstudio.com/docs/nodejs/reactjs-tutorial 要学习react.js &#xff0c;还得先安装node.js&#xff0c;我在visual …

电脑技巧:推荐一款桌面增强工具AquaSnap

目录 一、软件介绍 二、功能介绍 2.1 窗口边缘停靠 2.2、 窗口平铺 2.3、 窗口对齐 2.4 窗口自动拉伸 2.5、同时移动多个窗口 2.6 、支持窗口置顶 2.7、 鼠标快捷方式 2.8、 键盘快捷键 三、软件特色 四、软件获取 一、软件介绍 AquaSnap(界面增强软件)是一款功能…

Yolov8-pose关键点检测:模型轻量化创新 | OREPA结合c2f,节省70%的显存!训练速度提高2倍! | CVPR2022

💡💡💡本文解决什么问题:浙大&阿里提出在线卷积重新参数化OREPA,节省70%的显存!训练速度提高2倍! OREPA | GFLOPs从9.6降低至8.2, mAP50从0.921提升至0.931 Yolov8-Pose关键点检测专栏介绍:https://blog.csdn.net/m0_63774211/category_12398833.html ✨✨…

渲染路径RenderingPath

文章目录 前言一、什么是渲染路径二、渲染路径有哪些1、前向渲染路径2、延迟渲染路径3、顶点照明渲染路径(已过时)4、旧的渲染路径&#xff08;已过时&#xff09; 前言 渲染路径RenderingPath 一、什么是渲染路径 为进行光照计算而设计的渲染方式 二、渲染路径有哪些 1、前向…

华为云云耀云服务器L实例评测 | 实例使用教学之简单使用:通过部署宝塔面板可视化管理华为云云耀云服务器

华为云云耀云服务器L实例评测 &#xff5c; 实例使用教学之简单使用&#xff1a;通过部署宝塔面板可视化管理华为云云耀云服务器 介绍华为云云耀云服务器 华为云云耀云服务器 &#xff08;目前已经全新升级为 华为云云耀云服务器L实例&#xff09; 华为云云耀云服务器是什么华为…

【C++】C++11新特性

目录 一、列表初始化C98中使用{}初始化的问题内置类型的列表初始化自定义类型的列表初始化 二、变量类型推导(decltype)类型推导类型推导的场景 四、类成员的新功能显示缺省参数删除默认函数final和override 四、可变参数列表五、lambda表达式引入lambda表达式语法 一、列表初始…