时序预测 | MATLAB实现POA-CNN-GRU鹈鹕算法优化卷积门控循环单元时间序列预测

时序预测 | MATLAB实现POA-CNN-GRU鹈鹕算法优化卷积门控循环单元时间序列预测

目录

    • 时序预测 | MATLAB实现POA-CNN-GRU鹈鹕算法优化卷积门控循环单元时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

MATLAB实现POA-CNN-GRU鹈鹕算法优化卷积门控循环单元时间序列预测(完整源码和数据)
1.MATLAB实现POA-CNN-GRU鹈鹕算法优化卷积门控循环单元时间序列预测(完整源码和数据)
2.输入输出单个变量,时间序列预测预测;
3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高;
4.鹈鹕算法优化参数为:学习率,隐含层节点,正则化参数;
5.excel数据,方便替换,运行环境2020及以上。

程序设计

  • 完整源码和数据获取方式:私信博主回复MATLAB实现POA-CNN-GRU鹈鹕算法优化卷积门控循环单元时间序列预测
%%  获取最优种群for j = 1 : SearchAgentsif(fitness_new(j) < GBestF)GBestF = fitness_new(j);GBestX = X_new(j, :);endend%%  更新种群和适应度值pop_new = X_new;fitness = fitness_new;%%  更新种群 [fitness, index] = sort(fitness);for j = 1 : SearchAgentspop_new(j, :) = pop_new(index(j), :);end%%  得到优化曲线curve(i) = GBestF;avcurve(i) = sum(curve) / length(curve);
end%%  得到最优值
Best_pos = GBestX;
Best_score = curve(end);%%  得到最优参数
NumOfUnits       =abs(round( Best_pos(1,3)));       % 最佳神经元个数
InitialLearnRate =  Best_pos(1,2) ;% 最佳初始学习率
L2Regularization = Best_pos(1,1); % 最佳L2正则化系数
% 
inputSize = k;
outputSize = 1;  %数据输出y的维度  
%  参数设置
opts = trainingOptions('adam', ...                    % 优化算法Adam'MaxEpochs', 20, ...                              % 最大训练次数'GradientThreshold', 1, ...                       % 梯度阈值'InitialLearnRate', InitialLearnRate, ...         % 初始学习率'LearnRateSchedule', 'piecewise', ...             % 学习率调整'LearnRateDropPeriod', 6, ...                     % 训练次后开始调整学习率'LearnRateDropFactor',0.2, ...                    % 学习率调整因子'L2Regularization', L2Regularization, ...         % 正则化参数'ExecutionEnvironment', 'gpu',...                 % 训练环境'Verbose', 0, ...                                 % 关闭优化过程'SequenceLength',1,...'MiniBatchSize',10,...'Plots', 'training-progress');                    % 画出曲线

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/144984.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Flutter笔记:手写一个简单的画板工具

Flutter笔记 手写一个简单的画板工具 作者&#xff1a;李俊才 &#xff08;jcLee95&#xff09;&#xff1a;https://blog.csdn.net/qq_28550263 邮箱 &#xff1a;291148484163.com 本文地址&#xff1a;https://blog.csdn.net/qq_28550263/article/details/133418742 目 录 1…

华为智能企业上网行为管理安全解决方案(2)

本文承接&#xff1a; https://blog.csdn.net/qq_37633855/article/details/133339254?spm1001.2014.3001.5501 重点讲解华为智能企业上网行为管理安全解决方案的部署流程。 华为智能企业上网行为管理安全解决方案&#xff08;2&#xff09; 课程地址方案部署整体流程组网规划…

R语言进行孟德尔随机化+meta分析(2)----基于R和stata

目前不少文章用到了孟德尔随机化meta分析&#xff0c;在上一章咱们简单介绍了一下meta分析的基础知识。咱们今天来介绍一篇11分文章&#xff0c;由文章看看孟德尔随机化meta分析如何进行&#xff0c;文章的题目是&#xff1a;Appraising the causal role of smoking in multipl…

No165.精选前端面试题,享受每天的挑战和学习

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…

AIGC(生成式AI)试用 7 -- 桌面小程序

生成式AI&#xff0c;别人用来写作&#xff0c;我先用来写个桌面小程序。 桌面小程序&#xff1a;计算器 需求 Python开发图形界面&#xff0c;标题&#xff1a;计算器 - * / 基本运算计算范围&#xff1a;-999999999 ~ 999999999** 乘方计算&#xff08;例&#xff0c;2*…

NX 1988 如何将组件转为部件

打开组件 文件-导出-部件 指定部件名为1206&#xff0c;类选择&#xff1a;所有要导出的部件 选择完全加载 完成

【从入门到起飞】JavaSE—Stream流

&#x1f38a;专栏【JavaSE】 &#x1f354;喜欢的诗句&#xff1a;更喜岷山千里雪 三军过后尽开颜。 &#x1f386;音乐分享【如愿】 &#x1f970;欢迎并且感谢大家指出我的问题 文章目录 &#x1f354;Stream流的作用&#x1f354;Stream流的使用步骤&#x1f384;获取Strea…

Go-Ldap-Admin | openLDAP 同步钉钉、企业微信、飞书组织架构实践和部分小坑

目录 一、Docker-compose快速拉起demo测试环境 二、原生部署流程 安装MySQL&#xff1a;5.7数据库 安装openLDAP 修改域名&#xff0c;新增con.ldif 创建一个组织 安装OpenResty 下载后端 下载前端 部署后端 部署前端 三、管理动态字段 钉钉 企业微信 飞书 四、…

内存函数(memcpy、memmove、memset、memcmp)你真的懂了吗?

&#x1f493;博客主页&#xff1a;江池俊的博客⏩收录专栏&#xff1a;C语言进阶之路&#x1f449;专栏推荐&#xff1a;✅C语言初阶之路 ✅数据结构探索&#x1f4bb;代码仓库&#xff1a;江池俊的代码仓库&#x1f389;欢迎大家点赞&#x1f44d;评论&#x1f4dd;收藏⭐ 文…

26663-2011 大型液压安全联轴器 课堂随笔

声明 本文是学习GB-T 26663-2011 大型液压安全联轴器. 而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们 1 范围 本标准规定了大型液压安全联轴器的分类、技术要求、试验方法及检验规则等。 本标准适用于联接两同轴线的传动轴系&#xff0c;可起到限制…

分布式事务-TCC案例分析流程图

防止cancel方法在最后执行出现问题&#xff0c;用户收到提示已经退款成功但是由于cancel过慢或者出现问题&#xff08;虽然最后会重试成功但是用户体验很差&#xff09;&#xff0c;可以做以下的业务sql模型优化(增加一个冻结金额)。

消息队列实现进程间通信

write.c #include<myhead.h>typedef struct {long msgtype; //消息类型char data[1024]; //消息正文 }Msg_s;#define SIZE sizeof(Msg_s)-sizeof(long) //消息正文的大小int main(int argc, const char *argv[]) {key_t key; //定义一个键值if((key ftok("./&q…

基于springboot的洗衣店订单管理系统

目录 前言 一、技术栈 二、系统功能介绍 顾客信息管理 店家信息管理 店铺信息管理 洗衣信息管理 预约功能 洗衣信息 交流区 三、核心代码 1、登录模块 2、文件上传模块 3、代码封装 前言 随着信息互联网信息的飞速发展&#xff0c;无纸化作业变成了一种趋势&#x…

红队打靶:THE PLANETS: MERCURY打靶思路详解(vulnhub)

目录 写在开头 第一步&#xff1a;主机发现和端口扫描 第二步&#xff1a;Web渗透 第三步&#xff1a;获取初步立足点并搜集信息 第四步&#xff1a;软连接劫持sudo提权 总结与思考 写在开头 本篇博客在自己的理解之上根据大佬红队笔记的视频进行打靶&#xff0c;详述了…

【HTML】表格行和列的合并

概述 当我们需要在 HTML 表格中展示复杂的数据时&#xff0c;行和列的合并可以帮助我们实现更灵活的布局和结构。通过合并行和列&#xff0c;我们可以创建具有更多层次和结构的表格&#xff0c;使数据更易于理解和分析。 在 HTML 表格中&#xff0c;我们可以使用 rowspan 和 …

KUKA机器人通过3点法设置工作台基坐标系的具体方法

KUKA机器人通过3点法设置工作台基坐标系的具体方法 具体方法和步骤可参考以下内容: 进入主菜单界面,依次选择“投入运行”—“测量”—基坐标,选择“3点法”, 在系统弹出的基坐标编辑界面,给基座标编号为3,命名为table1,然后单击“继续”按钮,进行下一步操作, 在弹出的…

华为云智能化组装式交付方案 ——金融级PaaS业务洞察及Web3实践的卓越贡献

伴随信息技术与金融业务加速的融合&#xff0c;企业应用服务平台&#xff08;PaaS&#xff09;已从幕后走向台前&#xff0c;成为推动行业数字化转型的关键力量。此背景下&#xff0c;华为云PaaS智能化组装式交付方案闪耀全场&#xff0c;在近日结束的华为全联接大会 2023上倍受…

word中使用latex多行公式,矩阵公式

\eqarray{H& [h(x_1)^T,\cdots,h(x_N)^T]^T \\ & [\matrix{g(w_1 x_1b_1) & \cdots & g(w_L x_1b_L) \\ \vdots & \ddots & \vdots \\ g(w_1 x_Nb_1) & \cdots & g(w_L x_Nb_L)}]_{N \times L}}&的引起的那条竖线可以通过backspace或者del…

5、Linux驱动开发:设备-设备注册

目录 &#x1f345;点击这里查看所有博文 随着自己工作的进行&#xff0c;接触到的技术栈也越来越多。给我一个很直观的感受就是&#xff0c;某一项技术/经验在刚开始接触的时候都记得很清楚。往往过了几个月都会忘记的差不多了&#xff0c;只有经常会用到的东西才有可能真正记…

Kubernetes 上的数据已跨越鸿沟:在 GKE 上运行有状态应用程序的案例

Kubernetes 是当今云原生开发的事实上的标准。长期以来&#xff0c;Kubernetes 主要与无状态应用程序相关&#xff0c;例如 Web 和批处理应用程序。然而&#xff0c;与大多数事物一样&#xff0c;Kubernetes 也在不断发展。如今&#xff0c;我们看到 Kubernetes 上有状态应用程…