面试题六:Promise的使用,一文详细讲解

含义

Promise是异步编程的一种解决方案,比传统的解决方案(回调函数和事件)更合理更强大。

所谓Promise,简单说就是一个容器,里面保存着某个未来才会结束的事件 (通常是一个异步操作)的结果。从语法上说,Promise是一个对象,从它可以获取异步操作的消息。

 这么一看就明白了,Promise是一个构造函数,自己身上有all、reject、resolve这几个眼熟的方法,原型上有then、catch等同样很眼熟的方法。这么说用Promise new出来的对象肯定就有then、catch方法喽。

基本用法

ES6规定,Promise对象是一个构造函数,用来生成Promise实例

var promise = new Promise(function(resolve,reject){if(/* 异步操作成功 */){resolve(value);}else{reject(error);}
});

Promise构造函数接受一个函数作为参数,该函数的两个参数分别是resolve和reject,分别表示异步操作执行成功后的回调函数和异步操作执行失败后的回调函数。它们是两个函数,又JavaScript引擎提供,不是自己部署。

resolve函数的作用,将Promise对象的状态从“未完成”变成“成功”(即从Pending变为Resolved),在异步操作成功时调用,并将异步操作的结果,作为参数传递出去;
reject函数的作用是,在异步操作失败时调用,并将异步操作报出的错误,作为参数传递出去。

看下面这段代码:
 

var p = new Promise(function(resolve, reject){//做一些异步操作setTimeout(function(){console.log('执行完成');resolve('数据');}, 2000);
});

在上面的代码中,我们执行了一个异步操作,也就是setTimeout,2秒后,输出“执行完成”,并且调用resolve方法。

运行代码,会在2秒后输出“执行完成”。注意!我只是new了一个对象,并没有调用它,我们传进去的函数就已经执行了,这是需要注意的一个细节。所以我们用Promise的时候一般是包在一个函数中,在需要的时候去运行这个函数,如:
 

function runAsync(){var p = new Promise(function(resolve, reject){//做一些异步操作setTimeout(function(){console.log('执行完成');resolve('数据');}, 2000);});return p;            
}
runAsync()

在我们包装好的函数最后,会return出Promise对象,也就是说,执行这个函数我们得到了一个Promise对象。还记得Promise对象上有then、catch方法吧?这就是强大之处了,看下面的代码:

runAsync().then(function(data){console.log(data);//后面可以用传过来的数据做些其他操作//......
});

在runAsync()的返回上直接调用then方法,then接收一个参数,是函数,并且会拿到我们在runAsync中调用resolve时传的的参数。运行这段代码,会在2秒后输出“执行完成”,紧接着输出“数据”。

这时候你应该有所领悟了,原来then里面的函数就跟我们平时的回调函数一个意思,能够在runAsync这个异步任务执行完成之后被执行。这就是Promise的作用了,简单来讲,就是能把原来的回调写法分离出来,在异步操作执行完后,用链式调用的方式执行回调函数。

或许你会认为:我们把回调函数封装一下,给runAsync传进去不也一样吗,就像这样:
 

function runAsync(callback){setTimeout(function(){console.log('执行完成');callback('数据');}, 2000);
}runAsync(function(data){console.log(data);
});

那么问题来了,有多层回调该怎么办?如果callback也是一个异步操作,而且执行完后也需要有相应的回调函数,该怎么办呢?总不能再定义一个callback2,然后给callback传进去吧。而Promise的优势在于,可以在then方法中继续写Promise对象并返回,然后继续调用then来进行回调操作。


链式操作

function runAsync1(){var p = new Promise(function(resolve, reject){//做一些异步操作setTimeout(function(){console.log('异步任务执行完成1');resolve('数据1');}, 1000);});return p;            
}
function runAsync2(){var p = new Promise(function(resolve, reject){//做一些异步操作setTimeout(function(){console.log('异步任务执行完成2');resolve('数据2');}, 2000);});return p;            
}
function runAsync3(){var p = new Promise(function(resolve, reject){//做一些异步操作setTimeout(function(){console.log('异步任务执行完成3');resolve('数据3');}, 2000);});return p;            
}runAsync1()
.then(function(data){console.log(data);return runAsync2();
})
.then(function(data){console.log(data);return runAsync3();
})
.then(function(data){console.log(data);
});

控制台输出:

异步任务执行完成1
数据1
异步任务执行完成2
数据2
异步任务执行完成3
数据3

在then方法中,你也可以直接return数据而不是Promise对象,在后面的then中就可以接收到数据了,比如我们把上面的代码修改成这样:

runAsync1()
.then(function(data){console.log(data);return runAsync2();
})
.then(function(data){console.log(data);return '直接返回数据';  //这里直接返回数据
})
.then(function(data){console.log(data);
});

那么输出就变成了这样: 

异步任务执行完成1
数据1
异步任务执行完成2
数据2
直接返回数据

reject的用法

到这里,你应该对“Promise是什么玩意”有了最基本的了解。那么我们接着来看看ES6的Promise还有哪些功能。我们光用了resolve,还没用reject呢,它是做什么的呢?事实上,我们前面的例子都是只有“执行成功”的回调,还没有“失败”的情况,reject的作用就是把Promise的状态置为rejected,这样我们在then中就能捕捉到,然后执行“失败”情况的回调。看下面的代码。
 

function getNumber(){var p = new Promise(function(resolve, reject){//做一些异步操作setTimeout(function(){var num = Math.ceil(Math.random()*10); //生成1-10的随机数if(num<=5){resolve(num);}else{reject('数字太大了');}}, 2000);});return p;            
}getNumber()
.then(function(data){console.log('resolved');console.log(data);}, function(reason, data){console.log('rejected');console.log(reason);}
);

getNumber函数用来异步获取一个数字,2秒后执行完成,如果数字小于等于5,我们认为是“成功”了,调用resolve修改Promise的状态。否则我们认为是“失败”了,调用reject并传递一个参数,作为失败的原因。

运行getNumber并且在then中传了两个参数,then方法可以接受两个参数,第一个对应resolve的回调,第二个对应reject的回调。所以我们能够分别拿到他们传过来的数据。多次运行这段代码,你会随机得到下面两种结果: 

 catch的用法

我们知道Promise对象除了then方法,还有一个catch方法,它是做什么用的呢?其实它和then的第二个参数一样,用来指定reject的回调,用法是这样:

getNumber()
.then(function(data){console.log('resolved');console.log(data);
})
.catch(function(reason){console.log('rejected');console.log(reason);
});

效果和写在then的第二个参数里面一样。不过它还有另外一个作用:在执行resolve的回调(也就是上面then中的第一个参数)时,如果抛出异常了(代码出错了),那么并不会报错卡死js,而是会进到这个catch方法中。请看下面的代码:

getNumber()
.then(function(data){console.log('resolved');console.log(data);console.log(somedata); //此处的somedata未定义
})
.catch(function(reason){console.log('rejected');console.log(reason);
});

在resolve的回调中,我们console.log(somedata);而somedata这个变量是没有被定义的。如果我们不用Promise,代码运行到这里就直接在控制台报错了,不往下运行了。但是在这里,会得到这样的结果: 

resolved
4
rejected
ReferenceError:somedata is not defined(...)

也就是说进到catch方法里面去了,而且把错误原因传到了reason参数中。即便是有错误的代码也不会报错了,这与我们的try/catch语句有相同的功能。

Ajax中的使用案例

 假如有a,b请求,b依赖a的请求数据。如下:

function a(){return new Promise(function(res,rej){$.ajax({url:"a接口",type: "GET",async:true,dataType:"json",success:function(data){console.log(data,"a");res(data);}})});}function b(data){console.log(data,"data");return new Promise(function(res,rej){$.ajax({url:"b接口",type: "POST",async:true,data:JSON.stringify(data),dataType:"json",success:function(data){console.log(data,"b");res();}})});}$("#btn").click(function(){a().then(function (data){b(data);}).then(function(){})})

注:Axios 是一个基于 promise 的 HTTP 库。

 Promise.all()的使用

描述

1.await 可以获得多个promise 的返回结果

2. Promise.all 返回的也是promise,所以可以直接await Promise.all();

 1. 使用Promise.all()

function fn(){return new Promise((resolve,reject)=>{let randomNum = parseInt(Math.random()*6+1);console.log(randomNum);if(randomNum>3){resolve('买'); }else{reject('不买');}})
}Promise.all([fn(),fn()]).then((x)=>{console.log(x,'success')},(y)=>{console.log(y,'error');});

Promise.all 里面参数为一个数组,数组的每一项是一个返回promise 的函数调用。
then 的第一个参数是所有promise都成功的调用,返回结果是一个数组,数组的每一项为函数promise 的返回结果。
then 的第二个参数:返回结果有一个失败则执行失败的回调,拿到的是第一个失败的值。

2. 使用await

await 是可以获得多个promise 返回结果的,Promise.all()返回的也是promise结果。所以想要使用await 拿到多个promise的返回值,可以直接await Promise.all();

function fn(){return new Promise((resolve,reject)=>{let randomNum = parseInt(Math.random()*6+1);console.log(randomNum);if(randomNum>3){resolve('买'); }else{reject('不买');}})
}
async function test(){try{let res = await Promise.all([fn(),fn()]);console.log(res,'success');}catch(error){console.log(error,'error');}
}test();
  • Promise.all([fn(),fn()]) 都返回resolve(); 才能够拿到成功的返回值
  • Promise.all([fn(),fn()]) 有一个返回reject(), 则进入catch(error), 拿到失败的返回值

实际案例

这边引入两个接口,获取结果,然后取到两个接口的值的和。通过Promise.all,能够获得和。

selectRewiewTaskNum() {console.log('我要获取复核的数据')let promiseValues = [ApiSign.selectReviewCount(), ApiSign.selectAssetPoolNum()]Promise.all(promiseValues).then(res => {console.log('res', res)this.billTaskNum = res[0].data.billTaskNumthis.assetPoolTaskNum = res[1].data.assetPoolTaskNumthis.taskNumber2 = this.assetPoolTaskNum + this.billTaskNumconsole.log('数据是', this.assetPoolTaskNum, this.billTaskNum)})},

Promise.race()使用 

Promise.race其实使用的并不多,如果真要使用。我们可以提出这样一个需求:

比如:点击按钮发请求,当后端的接口超过一定时间,假设超过三秒,没有返回结果,我们就提示用户请求超时

<template><div class="box"><el-button type="primary" plain @click="clickFn">点击测试</el-button></div>
</template><script>
export default {name: "App",methods: {async clickFn() {// 第一个异步任务function asyncOne() {let async1 = new Promise(async (resolve, reject) => {setTimeout(() => {// 这里我们用定时器模拟后端发请求的返回的结果,毕竟都是异步的let apiData1 = "某个请求";resolve(apiData1);}, 4000);});return async1;}console.log("异步任务一", asyncOne());  // 返回的是pending状态的Promise对象// 第二个异步任务function asyncTwo() {let async2 = new Promise(async (resolve, reject) => {setTimeout(() => {let apiData2 = "超时提示";resolve(apiData2);}, 3000);});return async2;}console.log("异步任务二", asyncTwo()); // 返回的是pending状态的Promise对象// Promise.race接收的参数也是数组,和Promise.all类似。只不过race方法得到的结果只有一个// 就是谁跑的快,结果就使用谁的值let paramsArr = [asyncOne(), asyncTwo()]Promise.race(paramsArr).then((value) => {console.log("Promise.race方法的结果", value);if (value == "超时提示") {this.$message({type:"warning",message:"接口请求超时了"})  }else{console.log('正常操作即可');}})},},
};
</script>

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/145259.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【JavaEE初阶】 计算机是如何工作的

文章目录 &#x1f332;计算机发展史&#x1f38b;冯诺依曼体系&#xff08;Von Neumann Architecture&#xff09;&#x1f38d;CPU 基本工作流程&#x1f4cc;逻辑门&#x1f388;电子开关 —— 机械继电器(Mechanical Relay)&#x1f388;门电路(Gate Circuit)NOT GATE&…

ElasticSearch深度分页解决方案

文章目录 概要ElasticSearch介绍es分页方法es分页性能对比表方案对比 From/Size参数深度分页问题Scroll#性能对比向前翻页 总结个人思考 概要 好久没更新文章了&#xff0c;最近研究了一下es的深分页解决方案。和大家分享一下&#xff0c;祝大家国庆节快乐。 ElasticSearch介…

windows下python开发环境的搭建 python入门系列 【环境搭建篇】

在正式学习Python之前要先搭建Python开发环境。由于Python是跨平台的&#xff0c;所以可以在多个操作系统上进行编程 一、python的下载安装与配置 1、Python解释器 1. 要进行Python开发&#xff0c;首先需要Python解释器&#xff0c;这里说的安装Python就是安装Python解释器…

利用mAP计算yolo精确度

当将yolo算法移植部署在嵌入式设备上&#xff0c;为了验证算法的准确率。将模型测试的结果保存为txt文件&#xff08;每一个txt文件&#xff0c;对应一个图片&#xff09;。此外&#xff0c;需要将数据集中的标签由[x,y,w,h]转为[x1,y1,x2,y2]。最后&#xff0c;运行验证代码 …

极简非凡react hooks+arcoDesign+vite后台管理模板

最近捣鼓了一个vite4搭建react18后台模板&#xff0c;搭载了字节团队react组件库Arco Design&#xff0c;整体编译运行顺滑衔接。支持多种模板布局、暗黑/亮色模式、国际化、权限验证、多级路由菜单、tabview标签栏快捷菜单、全屏控制等功能。 使用技术 "arco-design/web…

如何写一份完整的职业规划书?

写职业规划书&#xff0c;确定今后几年的一个发展方向&#xff08;职业规划建议越早越好&#xff09;&#xff0c;帮助自己收获更大的成功。普通的职业规划书书写起来十分简单&#xff0c;没有想象中那样复杂&#xff0c;只需要包括基本的部分&#xff0c;就可以轻轻松松完成。…

【面试经典150 | 数组】除自身以外数组的乘积

文章目录 写在前面Tag题目来源题目解读解题思路方法一&#xff1a;记录左右乘积空间优化 写在最后 写在前面 本专栏专注于分析与讲解【面试经典150】算法&#xff0c;两到三天更新一篇文章&#xff0c;欢迎催更…… 专栏内容以分析题目为主&#xff0c;并附带一些对于本题涉及到…

从 低信噪比陆上地震记录 解决办法收集 到 走时层析反演中的折射层析调研

目录 (前言1) 关于背景的回答:(前言2) 现有的降低噪声, 提高信噪比的一些特有方法的论文资料 (传统策略):1. 关于波形反演与走时层析反演2. 折射层析3. 用一个合成数据来解释折射层析反演的思路4. 其他层析反演方法:5. 关于层析反演的一些TIPS (可补充)参考文献: 降噪有关资料参…

Android 视频通话分析总结

1、WireShark 解析视频流 1.1 安装插件 下载rtp_h264_extractor.lua文件&#xff0c;放入Wireshark安装目录 下载地址&#xff1a;https://download.csdn.net/download/tjpuzm/88381821 在init.lua中添加如下代码 dofile(DATA_DIR.."rtp_h264_extractor.lua") 重新…

【ARMv8 SIMD和浮点指令编程】NEON 加载指令——如何将数据从内存搬到寄存器(其它指令)?

除了基础的 LDx 指令,还有 LDP、LDR 这些指令,我们也需要关注。 1 LDNP (SIMD&FP) 加载 SIMD&FP 寄存器对,带有非临时提示。该指令从内存加载一对 SIMD&FP 寄存器,向内存系统发出访问是非临时的提示。用于加载的地址是根据基址寄存器值和可选的立即偏移量计算…

【数据结构】逻辑结构与物理结构

&#x1f984;个人主页:修修修也 &#x1f38f;所属专栏:数据结构 ⚙️操作环境:Visual Studio 2022 目录 &#x1f333;逻辑结构 1.集合结构 2.线性结构 3.树形结构 4.图形结构或网状结构 &#x1f333;物理结构 1.顺序存储结构 2.链式存储结构 结语 根据视点的不同,我…

华为ensp单臂路由及OSPF实验

单臂路由及OSPF实验 1.1实验背景 在这个实验中&#xff0c;我们模拟了一个复杂的网络环境&#xff0c;该网络环境包括多个子网和交换机。这个实验旨在帮助网络工程师和管理员了解如何配置单臂路由和使用开放最短路径优先&#xff08;OSPF&#xff09;协议来实现不同子网之间的…

【Java 进阶篇】MySQL 事务详解

在数据库管理中&#xff0c;事务是一组SQL语句的执行单元&#xff0c;它们被视为一个整体。事务的主要目标是保持数据库的一致性和完整性&#xff0c;即要么所有SQL语句都成功执行&#xff0c;要么所有SQL语句都不执行。在MySQL中&#xff0c;事务起到了非常重要的作用&#xf…

数据结构--栈的实现

数据结构–栈的实现 1.栈的概念和结构&#xff1a; 栈的概念&#xff1a;栈是一种特殊的线性表&#xff0c;其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端 称为栈顶&#xff0c;另一端称为栈底。栈中的数据元素遵守后进先出LIFO&#xff08;Las…

【RabbitMQ实战】07 3分钟部署一个RabbitMQ集群

一、集群的安装部署 我们还是利用docker来安装RabbitMQ集群。3分钟安装一个集群&#xff0c;开始。 前提条件&#xff0c;docker安装了docker-compose。如果没安装的话&#xff0c;参考这里 docker-compose文件参考bitnami官网&#xff1a;https://github.com/bitnami/contai…

GD32F10x的输出模式

1. 单片机型号的识别。 2. GPIO的输出模式。 1. 开漏模式 2.推挽模式 3.复用开漏模式 4.复用推挽模式。 开漏模式&#xff1a;&#xff08;写入位设置&#xff0c;输出数据寄存器来控制MOS&#xff09; 只有N-MOS管导通。PMOS不导通。 当N-MOS的栅极为0&#xff0c;N-MOS管…

Stm32_标准库_4_TIM中断_PWM波形_呼吸灯

基本原理 PWM相关物理量的求法 呼吸灯代码 #include "stm32f10x.h" // Device header #include "Delay.h"TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; TIM_OCInitTypeDef TIM_OCInitStructuer;//结构体 GPIO_InitTypeDef GPIO_InitStructur…

uniapp iOS离线打包——上传到App Store

uniapp iOS离线打包&#xff0c;如何打包上传到App Store&#xff1f; 文章目录 uniapp iOS离线打包&#xff0c;如何打包上传到App Store&#xff1f;打包上传 App Store App iOS 离线打包 上一篇分享部分工程配置 打包上传 App Store 选中项目工程&#xff1a;点击 工具栏 P…

GitHub 基本操作

最近要发展一下自己的 github 账号了&#xff0c;把以前的项目代码规整规整上传上去&#xff0c;这里总结了一些经验&#xff0c;经过数次实践之后&#xff0c;已解决几乎所有基本操作中的bug&#xff0c;根据下面的操作步骤来&#xff0c;绝对没错了。&#xff08;若有其他问题…

排序算法之【快速排序】

&#x1f4d9;作者简介&#xff1a; 清水加冰&#xff0c;目前大二在读&#xff0c;正在学习C/C、Python、操作系统、数据库等。 &#x1f4d8;相关专栏&#xff1a;C语言初阶、C语言进阶、C语言刷题训练营、数据结构刷题训练营、有感兴趣的可以看一看。 欢迎点赞 &#x1f44d…