动态规划算法(1)--矩阵连乘和凸多边形剖分

目录

一、动态数组

1、创建动态数组

2、添加元素

3、删除修改元素

4、访问元素 

5、返回数组长度

6、for each遍历数组 

二、输入多个数字 

1、正则表达式

2、has.next()方法

三、矩阵连乘

1、什么是矩阵连乘?

2、动态规划思路

3、手推m和s矩阵

4、完整代码

5、备忘录方法

四、凸多边形剖分

1、凸多边形形三角剖分原理

2、完整代码 


一、动态数组

1、创建动态数组

        创建动态数组ArrayList,先调用ArrayList库,之后动态创建语句如下,括号内填写数组元素个数,不知道可以不填。

    import java.util.ArrayList;ArrayList<Integer> num = new ArrayList<>();

2、添加元素

        使用函数add添加元素。如:添加元素1。

    num.add(1);

        如果创建一个ArrayList num与list1相同(num和list1同为ArrayList类型)

    ArrayList<Integer> num = new ArrayList<>(list1);

3、删除修改元素

       使用函数remove删除特定索引的元素。如:删除索引为1的元素。

    num.remove(1);

        使用函数set修改特定索引的元素。如:将索引为1的元素修改为"java"。

    num.set(1,"java");

4、访问元素 

        使用函数get返回特定索引的元素。如:返回索引1的元素并打印。

    system.out.println(num.get(1));

5、返回数组长度

        使用函数size()返回数组长度。如:返回数组num长度并打印

    system.out.println(num.size())

6、for each遍历数组 

        i是遍历的数组每一个值,num是数组名。

    for(int i:num){System.out.println(i);}

二、输入多个数字 

1、正则表达式

        不需要import其他的东西。输入一串以空格为间隔的数字,字符串形式,经过正则表达式拆解,存入num动态数组中。

        如果数字之间以逗号为间隔,则需要将匹配改为",\\s+"。

    import java.util.ArrayList;ArrayList<Integer> num = new ArrayList<>();String input= new Scanner(System.in).nextLine();String[] numbers=input.split("\\s+");for (String number : numbers) {num.add(Integer.parseInt(number));}

2、has.next()方法

        该方法存在弊端,不能退出循环。

    import java.util.ArrayList;ArrayList<Integer> num = new ArrayList<>();Scanner scanner=new Scanner(System.in);int n;int[] num;while(scanner.hasNext()) {n=scanner.nextInt();num.add(n);}

三、矩阵连乘

1、什么是矩阵连乘?

        不同的结合方式,可以导致不同的数乘次数,因为乘法远大于加法量级,所以加法可以忽视。那什么样的括号选择是可以获得最少的数乘次数呢?

        如果一味的进行枚举,寻找最优的数乘次数需要指数级复杂度。显然这种方式,在较大的个数面前利用计算机是不能解决的。

2、动态规划思路

(1)首先定义几个结构,以便后续进行理解。

        A[1:n],代表1到n个矩阵的连乘积。

        A[i:j]的最少数乘次数记为m[i][j]。

        p数组为矩阵链的值。比如30*35和35*15两个矩阵的矩阵链为30,35,15。

        s数组记录断开位置。

(2)矩阵连乘遵循最优子结构,也就是说矩阵连乘的各子结构都是最优的。

        假设A[1:4]的最优子结构是 (A_1A_2)(A_3A_4) ,那么A[1:2]的最优子结构一定是(A_1A_2)

        根据上面两条,我们能得出A[i:j]的最少数乘次数记为m[i][j],

3、手推m和s矩阵

        m矩阵和s矩阵几乎同步计算,仅保留上三角形,主对角线均为全0,依次按对角线进行计算,每计算完一条对角线向右上平移一条对角线。

        下面给出m[1][3]和s[1][3]的计算,可以看到从1断开(A_1(A_2A_3))小于从2分割((A_1A_2)A_3)的值,所以m[1][3]选择较小者7875,s[1][3]=1。

        如果求解A[1:6]的最优解的匹配方式,倒序执行上面s步骤。

4、完整代码

import java.util.Scanner;
import java.util.ArrayList;
public class matrixplusnew {public static void main(String[] args){ArrayList<Integer> num = new ArrayList<>();String input= new Scanner(System.in).nextLine();String[] numbers=input.split("\\s+");for (String number : numbers) {num.add(Integer.parseInt(number));}int size=num.size()-1;//6*6int [][] m=new int[size+1][size+1];int [][] s=new int[size+1][size+1];MatrixChain(num,m,s);//输出m数组for(int i=1;i<size+1;i++){for(int j=1;j<size+1;j++){System.out.print(m[i][j]);System.out.print("\t");}System.out.println("");}//输出s数组for(int i=1;i<size+1;i++){for(int j=1;j<size+1;j++){System.out.print(s[i][j]);System.out.print("\t");}System.out.println("");}//输出A[1:6]的匹配方式Traceback(1, 6, s);}//m数组和s数组生成public static void MatrixChain(ArrayList<Integer>p,int [][]m,int [][]s) {int n = p.size() - 1;for (int i = 1; i <= n; i++) {m[i][i] = 0;}for (int r = 2; r <= n; r++) {for (int i = 1; i <= n - r + 1; i++) {int j = i + r - 1;    //这个位置非常巧妙,可以确保对角线依次执行m[i][j] = m[i + 1][j] + p.get(i - 1) * p.get(i) * p.get(j);//由于第二条对角线,依赖于第一条对角线计算m[i][i],m[i][i]值为0,故省略。s[i][j] = i;for (int k = i + 1; k < j; k++){int t = m[i][k] + m[k + 1][j] + p.get(i - 1) * p.get(k) * p.get(j);if (t < m[i][j]) {m[i][j] = t;s[i][j] = k;}}}}}//获得括号匹配方式private static void Traceback(int i,int j,int[][]s){if(i==j)return;Traceback(i, s[i][j],s);    //单独写每两个子结构的最优解,可以供读者合成匹配方式Traceback(s[i][j]+1,j,s);System.out.print("A"+i+", "+s[i][j]);System.out.println(" and A"+(s[i][j]+1)+", "+j);}
}

5、备忘录方法

        备忘录算法自顶向下计算,但他不够灵活,每次计算完整矩阵链的最优次序。其中p,m数组都为类外数组,所有函数均可使用。通过减少重复计算,减少时间复杂度。

public static int memoizedmatrixChain(int n){for (int i=0;i<=n;i++){for(int j=0;j<=n;j++){m[i][j]=0;}}//初始化备忘录数组return lookupChain(1,n);
}
public static lookupChain(int i,int j){if(m[i][j]>0)return m[i][j];//如果该项子问题有记录,返回该记录if(i==j)return 0;//如果相乘的两个矩阵相等,则返回0int u=lookupChain(i+1,j)+p[i-1]*p[i]p[j];//递归调用s[i][j]=i;//存储最佳断点for(int k=i+1;k<j;k++){//这里面将断点从i+1开始,可以断链的点直到j-1为止int t=lookupChain(i,k)+lookupChain(k+1,j)+p[i-1]*p[k]*p[j];if(t<u){u=t;s[i][j]=k;}}m[i][j]=u;return u;
}

四、凸多边形剖分

        凸多边形三角剖分问题类似于矩阵连乘,都是利用动态规划分成子问题,对子问题递归求解。

1、凸多边形形三角剖分原理

        通过不同的拆分方法,假设不同边有不同的权值,那么或者不同的组合方式有不同的函数映射,那么不同的三角剖分方式就会存在不同的解,那么最优解怎么求呢?

        类比于矩阵连乘的规律,我们也对不同的组合方式加括号表示。最后凸多边形剖分问题也表示为多个子问题叠加的解。

        那么根据矩阵连乘,有下面这种最优解的产生形式,可以根据不同的加权的关系写出函数关系,变成矩阵连乘问题。

2、完整代码 

public class MinWeightTriangulation {public static void main(String [] args){int size=5;int m[][]=new int[size+1][size+1];int s[][]=new int[size+1][size+1];//定义权值int num[][]= {{0,2,2,3,1,4},{2,0,1,5,2,3},{2,1,0,2,1,4},{3,5,2,0,6,2},{1,2,1,6,0,1},{4,3,4,2,1,0}};Triangle(num,m,s);for(int i=1;i<size+1;i++){for(int j=1;j<size+1;j++){System.out.print(m[i][j]);System.out.print("\t");}System.out.println("");}Traceback(1, 5, s);}//计算最优值public static void Triangle(int[][]num,int[][]m,int[][]s){int n=5;for(int i=1;i<=n;i++)m[i][i]=0;for(int r=2;r<=n;r++){for(int i=1;i<=n-r+1;i++){int j=i+r-1;m[i][j]=m[i+1][j]+Weight(i-1, i, j, num);s[i][j]=i;for(int k=i+1;k<j;k++){int t=m[i][k]+m[k+1][j]+Weight(i-1, k, j, num);if(t<m[i][j]){m[i][j]=t;s[i][j]=k;}}}}}//权重计算public static int Weight(int i,int j,int k,int[][]num){return num[i][j]+num[j][k]+num[i][k];}//返回匹配方式public static void Traceback(int i,int j,int[][]s){if(i==j)return;Traceback(i, s[i][j],s);Traceback(s[i][j]+1,j,s);System.out.print("A"+i+", "+s[i][j]);System.out.println(" and A"+(s[i][j]+1)+", "+j);}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/145912.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vue之transition组件

Vue提供了transition组件&#xff0c;使用户可以更便捷地添加过渡动画效果。 transition组件 transition组件也是一个抽象组件&#xff0c;并不会渲染出真实dom。Vue会在其第一个真实子元素上添加过渡效果。 props render 这里将render分为两部分&#xff0c;第一部分界定真…

skywalking源码本地编译运行经验总结

前言 最近工作原因在弄skywalking&#xff0c;为了进一步熟悉拉了代码下来准备debug&#xff0c;但是编译启动项目我就费了老大劲了&#xff0c;所以准备写这篇&#xff0c;帮兄弟们少踩点坑。 正确步骤 既然是用开源的东西&#xff0c;那么最好就是按照人家的方式使用&…

云服务器租用价格表概览_阿里云腾讯云华为云

云服务器租用价格多少钱一年&#xff1f;阿腾云分享阿里云、腾讯云和华为云的云服务器租用价格表&#xff1a;阿里云2核2G服务器108元一年起、腾讯云2核2G3M带宽轻量服务器95元一年、华为云2核2G3M云耀L实例89元一年起&#xff0c;阿腾云分享更多关于云服务器租用价格明细&…

PICO首届XR开发者挑战赛正式启动,助推行业迈入“VR+MR”新阶段

9月25日&#xff0c;“PICO 2023首届XR开发者挑战赛”&#xff08;下文简称“挑战赛”&#xff09;媒体启动会在北京圆满落幕&#xff0c;官方赛事报名通道已于今日开启。据悉&#xff0c;本次挑战赛是PICO首次针对全球开发者举办的大型挑战赛事&#xff0c;旨在与开发者保持连…

第1篇 目标检测概述 —(4)目标检测评价指标

前言&#xff1a;Hello大家好&#xff0c;我是小哥谈。目标检测评价指标是用来衡量目标检测算法性能的指标&#xff0c;可以分为两类&#xff0c;包括框级别评价指标和像素级别评价指标。本节课就给大家重点介绍下目标检测中的相关评价指标及其含义&#xff0c;希望大家学习之后…

15np+pandas+matplotlib

numpy 维数 一维:shape(4,)二维:shape(4,5)三维:shape(4,5,6) 创建ndarray–np.array() # 可以是数组[1,2,3] 元组(1,2,3) 迭代对象range(n) np.array([1,2,3,4,5])列表中元素类型不同&#xff0c;会使用元素类型最大的作为ndarray类型 指定维度ndim 赋值操作 赋值&#xff…

NLP 01(介绍)

一、NLP 自然语言处理 (Natural Language rrocessing,简称NLP) 是计算机科学与语言学中关注于计算机与人类语言间转换的领域。 1.1 发展 规则&#xff1a;基于语法 自然语言处理的应用场景: 语音助手 机器翻译 搜索引擎 智能问答

独立按键控制LED亮灭、独立按键控制LED状态、独立按键控制LED显示二进制、独立按键控制LED移位——“51单片机”

各位CSDN的uu们你们好呀&#xff0c;今天依旧是小雅兰的51单片机的内容&#xff0c;内容主要是&#xff1a;独立按键控制LED亮灭、独立按键控制LED状态、独立按键控制LED显示二进制、独立按键控制LED移位&#xff0c;下面&#xff0c;让我们进入51单片机的世界吧&#xff01;&a…

基于Qt Creator开发的坦克大战小游戏

目录 介绍开发环境技术介绍安装说明项目目录设计思想项目介绍运行演示知识点记录Gitee源码链接 介绍 &#xff01;&#xff01;&#xff01;资源图片是从网上免费下载&#xff0c;源码都是原创&#xff0c;供个人学习使用&#xff0c;非盈利&#xff01;&#xff01;&#xff…

Elastic SQL 输入:数据库指标可观测性的通用解决方案

作者&#xff1a;Lalit Satapathy, Ishleen Kaur, Muthukumar Paramasivam Elastic SQL 输入&#xff08;metricbeat 模块和输入包&#xff09;允许用户以灵活的方式对许多支持的数据库执行 SQL 查询&#xff0c;并将结果指标提取到 Elasticsearch。 本博客深入探讨了通用 SQL …

Java进阶02 Array、内存分析、this、面向对象、继承、override、super、实例化、多态、向下转型、Object

文章目录 一、数组(Array)二、数组的内存分析三、Array工具类四、面向对象的一些小知识五、进阶知识补充1. this关键字2.继承3.方法重写4.super关键字的使用5.子类对象实例化6.多态性的体现7.向下转型8.Object类 一、数组(Array) 数组&#xff1a;多个相同类型数据按照一定顺序…

Qt应用开发(基础篇)——视图基类 QAbstractItemView

一、前言 QAbstractItemView类继承于QWidget&#xff0c;为全部视图类提供了基本的功能。 QAbstractItemView类是一个抽象类&#xff0c;不能被实例化使用&#xff0c;它是QtWidget框架中树视图QTreeView、列表视图QListView、表格视图QTableView、单列视图QColumnView和标题头…

nginx 反向代理 负载均衡 动静分离

一样东西的诞生通常都是为了解决某些问题&#xff0c;对于 Nginx 而言&#xff0c;也是如此。 比如&#xff0c;你出于无聊写了一个小网站&#xff0c;部署到 tomcat 之后可以正常访问 但是后来&#xff0c;你的这个小网站因为内容很诱人逐步的火了&#xff0c;用户越来越多&a…

深度学习笔记_1、定义神经网络

1、使用了PyTorch的nn.Module类来定义神经网络模型;使用nn.Linear来创建全连接层。(CPU) import torch.nn as nn import torch.nn.functional as F from torchsummary import summary# 定义神经网络模型 class Net(nn.Module):def __init__(self):super(Net, self).__init__()…

赋能工业数字化转型|辽宁七彩赛通受邀出席辽宁省工业互联网+安全可控先进制造业数字服务产业峰会

2023年9月25日下午&#xff0c;由软通动力信息技术&#xff08;集团&#xff09;股份有限公司主办的“工业互联网安全可控先进制造业数字服务产业峰会”在辽宁沈阳顺利举办。省市区各级政府、科研院所领导、技术专家、企业高管以及生态合作伙伴代表等齐聚一堂&#xff0c;共同探…

【JVM】第五篇 垃圾收集器G1和ZGC详解

导航 一. G1垃圾收集算法详解1. 大对象Humongous说明2. G1收集器执行一次GC运行的过程步骤3. G1垃圾收集分类4. G1垃圾收集器参数设置5. G1垃圾收集器的优化建议6. 适合使用G1垃圾收集器的场景?二. ZGC垃圾收集器详解1. NUMA与UMA2. 颜色指针3. ZGC的运作过程4. ZGC垃圾收集器…

【ShaderLab罪恶装备卡通角色_二次元风格_“Sol Badguy“_角色渲染(第二篇)】

罪恶装备背德之炎卡通角色_二次元风格_Unity 角色渲染 角色初始效果&#xff1a;基础渲染SimpleBas 资源分析模型顶点颜色&#xff1a; 贴图资源SOL_base_基础色块效果&#xff1a;其中SOL_base_A通道的效果&#xff1a; SOL_ilm&#xff1a;如下SOL_ilm模型上区域分布- 左到右…

python-切换镜像源和使用PyCharm进行第三方开源包安装

文章目录 前言python-切换镜像源和使用PyCharm进行第三方开源包安装1. 切换镜像源2. 使用PyCharm进行第三方开源包安装 前言 如果您觉得有用的话&#xff0c;记得给博主点个赞&#xff0c;评论&#xff0c;收藏一键三连啊&#xff0c;写作不易啊^ _ ^。   而且听说点赞的人每…

python爬取百度图片

1.查询数据 打开网页。 https://cn.bing.com/images/search?q%E7%99%BE%E5%BA%A6%E5%9B%BE%E7%89%87&formHDRSC2&first1&cw1585&ch924 我们右键查看网页源代码,发现能找到我们需要的img衔接,但是这是一个动态网页。我们每次向下滑动网页&#xff0c;会发现图…

RHEL8.0安装+基础命令练习+discuz(lamp)论坛搭建

上课练习环境&#xff1a; RHEL8.0系统镜像下载&#xff1a; 链接1&#xff1a;https://pan.baidu.com/s/1wX2j-aTO1VRcHQYpCDYnEg 提取码&#xff1a;6buv 链接2&#xff1a;https://ws28.cn/f/32i4oq8p5r1 &#xff08;下载完2个文件后只需要解压001&#xff0c;推荐压缩…