【时区】Flink JDBC 和CDC时间字段时区 测试及时间基准

关联文章:
各种时间类型和timezone关系浅析

一、测试目的和值

1. 测试一般的数据库不含time zone的类型的时区。

  • mysql timestamp(3) 类型
  • postgres timestamp(3) 类型
  • sqlserver datetime2(3) 类型
  • oracle类型 TIMESTAMP(3) 类型
    在以下测试之中均为ts字段

2.测试CDC中元数据op_ts 时区

op_tsTIMESTAMP_LTZ(3) NOT NULL当前记录表在数据库中更新的时间。如果从表的快照而不是 binlog 读取记录,该值将始终为0。|

在以下测试中cdc表建表均使用ts_ms TIMESTAMP_LTZ(3) METADATA FROM 'op_ts' VIRTUAL 表示。
cdc在读取表时候分两个阶段:

  1. 全量读取阶段,特点是jdbc读取,读取数据中op=r
  2. 增量读取阶段,特点是log读取,读取数据中op=c或u或d
    op在截图中看到如3="r" 或者 3="r",3是op字段的索引值。
    ts_ms在全量阶段读取数据以下成为READ数据
    ts_ms在增量阶段读取数据以下成为CREATE数据

3. flink 数据时间表示和时区

flink Table中时间必须使用org.apache.flink.table.data.TimestampData对象表示。

@PublicEvolving  
public final class TimestampData implements Comparable<TimestampData> {  private final long millisecond;  private final int nanoOfMillisecond;
}

此类型使用如下两个值联合表示记录时间。并不记录时区数据。

实战测试:

@Test  
public void testTimeZone(){  // 常识:Epoch就是值utc的0时间点,是全局绝对时间点,本质是`ZoneOffset.of("+0")`下的0时间。与`January 1, 1970, 00:00:00 GMT`视为等同。  // GMT是前世界标准时,UTC是现世界标准时。UTC 比 GMT更精准,以原子时计时,适应现代社会的精确计时。  // 28800000=8*3600*1000。8小时毫秒值。  // 如下时间是+8时区的数据库存储的不带时区的时间:2023-09-28T09:43:20.320  long ts=1695894200320L;  // 如果将ts当做utc时间0时刻转为字符串则会导致时间+8 hour。2023-09-28 17:43:20。这是一般常用的在线转换时间的结果。因其默认是是epoch时间,所以转换后会+8h。  // 可见数据库读取的不带timezone时间的毫秒值,并不是以utc0时间(epoch)为基准的,而是以当前时区0为基准的。  // LocalDateTime对象本质支持LocalDate和LocalTime两个对象,LocalDate持有Integer的`年`,`月`,`日`。LocalTime则持有Integer的`时`,`分`,`秒`等和java.util.Date类型并不一样。  // LocalDateTime 的带有ZoneOffset方法比较难理解,此处:  // epochSecond 当然值的是epoch的秒数,是绝对时间概念和`java.util.Date.getTime()/1000`对应的,而offset是指此epoch秒数需要偏移的时间量。  // 内部代码是`long localSecond = epochSecond + offset.getTotalSeconds();`。  // 如下代码是正确的,因为java中的`java.util.Date`类和`java.sql.Timestamp`类型都是持有绝对时间的类,`Date.getTime`获得也是相对于Epoch的毫秒值(Returns the number of milliseconds since January 1, 1970, 00:00:00 GMT)。  LocalDateTime ldtFromDate = LocalDateTime.ofEpochSecond(new Date().getTime() / 1000, 0, ZoneOffset.of("+8"));  System.out.println(ldtFromDate);  // 2023-09-28T16:16:45。此时时钟也是16:17:44。  Date date0 = new Date(0); // number of milliseconds since the standard base time known as "the epoch"  System.out.println(date0.getTime()); // 0, date0.getTime()方法返回绝对时间Returns the number of milliseconds since January 1, 1970, 00:00:00 GMT  // 如下的提供`ZoneOffset.UTC`可以理解是告诉LocalDateTime我提供的epochSecond已是`localSecond=当地时间-当地时间的0点`不需要再做转换了。  LocalDateTime ldt0 = LocalDateTime.ofEpochSecond(0L, 0, ZoneOffset.UTC);  System.out.println(ldt0); // 1970-01-01T00:00  LocalDateTime ldt8 = LocalDateTime.ofEpochSecond(0L, 0, ZoneOffset.of("+8"));  System.out.println(ldt8); // 1970-01-01T08:00  // TimestampData 默认不会进行任何时区转换。也不存储任何时区信息。内部仅靠`long millisecond`和`int nanoOfMillisecond`存储信息,以便于序列化。  // millisecond 一般可以认为是本地时间。因其在toString方法中会不会进行时区转换,toString方法仅是调用了`toLocalDateTime()`,中进行简单运算,并最终调用`LocalDateTime.toString`方法。  TimestampData td0 = TimestampData.fromEpochMillis(0); // 相当于LocalDateTime.ofEpochSecond(0, 0, ZoneOffset.UTC)。  System.out.println(td0); // 1970-01-01T00:00。可见TimestampData输出转字符串的时间就是以utc时间为基准的这和java.util.Date类型是一致的。  LocalDateTime ldt = LocalDateTime.ofEpochSecond(  ts / 1000  , (int) (ts % 1000 * 1_000_000)  , ZoneOffset.UTC);  System.out.println(ldt); // 2023-09-28T09:43:20.320  TimestampData td = TimestampData.fromEpochMillis(ts);  System.out.println(td); // 2023-09-28T09:43:20.320  Date date = new Date(ts); // 注意:参数date(the specified number of milliseconds since the standard base time known as "the epoch")应该是epoch但此时ts并不是epoch基准的而是本地local基准的。  System.out.println(date); // Thu Sep 28 17:43:20 CST 2023,CST就是北京时间了,其在toString方法中`BaseCalendar.Date date = normalize();`进行了时区转换即+8了。  
}

4. 测试组件版本

  • flink 1.13
  • flink-cdc 2.2.1
  • flink-connector-jdbc 自己定制的,根据3.1.1-1.17版本修改而来。

二、本测试共测试四大数据库:

  • mysql
  • postgres
  • sqlserver
  • oracle

二、每种数据库测试8项:

  • database-SQL
    直接从数据中读取数据,是测试的基准值
  • cdc-RowData
    使用cdc的SQL API从数据库中读取值并在 com.ververica.cdc.debezium.table.AppendMetadataCollector#collect 方法中debug得到数据
  • cdc-SQL(测试除ts_ms的字段)
    使用cdc的SQL API读取值使用flink sql-client查询,用于测试除ts_ms的字段。因ts_ms准确性需分两种情况讨论。
  • cdc-SQL-RealTime(测试ts_ms)
    使用cdc的SQL API从读取值,左上角是系统时间,下侧是实时读取的数据。
  • cdc-Read数据(测试snapshot读取ts_ms字段)
    测试snapshot读取ts_ms字段,即全量读取阶段的ts_ms值,按照flink-cdc官方解释此四个数据的全量阶段值均为0(1970-01-01 00:00:00)。非0即为不正确。
  • cdc-Create数据(测试incremental读取ts_ms字段)
    测试incremental读取ts_ms字段,即增量读取阶段的ts_ms值。按照flink-cdc官方解释此四个数据的增量阶段值为数据日志记录时间。
  • jdbc-RowData
    使用flink SQL API 读取connector是jdbc的表数据org.apache.flink.connector.jdbc.table.JdbcRowDataInputFormat#nextRecord的方法中debug得到数据。。不含tm_ms数据。
  • jdbc-SQL
    使用flink SQL API 读取connector是jdbc的表数据。使用flink sql-client查询。。不含tm_ms数据。

三、测试过程数据

3.1 mysql

3.1.1 database-SQL

在这里插入图片描述

3.1.2 cdc-RowData

在这里插入图片描述

3.1.3 cdc-SQL(测试除ts_ms的字段)

![[image-20230927163847043.png|201]]

3.1.4 cdc-SQL-RealTime(测试ts_ms)

如下:上侧(win系统显示时间截图),下侧(cdc-query的ts_ms)
如果基本一致(不是差值8h),说明cdc-query的ts_ms是正确的的。
![[image-20230928132434484.png|325]]

3.1.5 cdc-Read数据(测试snapshot读取ts_ms字段)

![[image-20230928100333641.png]]

3.1.6 cdc-Create数据(测试incremental读取ts_ms字段)

![[image-20230928101529479.png]]

3.1.7 jdbc-RowData

![[image-20230927172538194.png]]

3.1.8 jdbc-SQL

![[image-20230927171613530.png|206]]

3.2 postgres

3.2.1 database-SQL

![[image-20230927145744323.png]]

3.2.2 cdc

cdc-RowData
![[image-20230927145825569.png]]

3.2.3 cdc-SQL(测试除ts_ms的字段)

![[image-20230927151801248.png|200]]

3.2.4 cdc-SQL-RealTime(测试ts_ms)

![[image-20230928132850256.png|325]]

3.2.5 cdc-Read数据(测试snapshot读取ts_ms字段)

![[image-20230928095911025.png]]

3.2.6 cdc-Create数据(测试incremental读取ts_ms字段)

![[image-20230928101453266.png]]

3.2.7 jdbc

jdbc-RowData
![[image-20230927173637049.png]]

3.2.8 jdbc-SQL

![[image-20230927173456643.png|212]]

3.3 sqlserver

3.3.1 database-SQL

![[image-20230927163637993.png]]

3.3.2 cdc-RowData

![[image-20230927163611807.png]]

3.3.3 cdc-SQL(测试除ts_ms的字段)

![[image-20230927163808365.png|192]]

3.3.4 cdc-SQL-RealTime(测试ts_ms)

![[image-20230928133349412.png|350]]

3.3.5 cdc-Read数据(测试snapshot读取ts_ms字段)

![[image-20230928094006306.png]]

3.3.6 cdc-Create数据(测试incremental读取ts_ms字段)

![[image-20230928101415704.png]]

3.3.7 jdbc-RowData

![[image-20230927174904854.png]]

3.3.8 jdbc-SQL

![[image-20230927182456589.png|194]]

3.4 oracle

3.4.1 database-SQL

![[image-20230927160526864.png]]

3.4.2 cdc-RowData

![[image-20230927160425443.png]]

3.4.3 cdc-SQL(测试除ts_ms的字段)

![[image-20230927160753056.png|191]]

3.4.3 cdc-SQL-RealTime(测试ts_ms)

![[image-20230928133736851.png|400]]

3.4.4 cdc-Read数据(测试snapshot读取ts_ms字段)

![[image-20230928101223538.png]]

3.4.5 cdc-Create数据(测试incremental读取ts_ms字段)

![[image-20230928101030948.png]]

3.4.7 jdbc-RowData

![[image-20230927183056565.png]]

3.4.8 jdbc-SQL

![[image-20230927182935788.png|203]]

四、结论

(1)数据库获取的without time zone在flink中都是以本地时间的存储的。可以使用LocalDateTime.ofEpochSecond(long epochSecond, int nanoOfSecond, ZoneOffset.UTC)直接获取。
(2)Flink中的TimestampData中存储的一般可以认为是本地时间。但需要注意:TimestampData 不可将 instant 相关方法localDateTime 、Timestamp 相关方法混用。因为instant代表与epoch时间差。而后两者代表与local是时间差。
(3)Flink程序中时间的标准值都是local本地的。因其在Sql API(sql-client)中打印出的结果会与原始数据库中打印的一致。

如下图中红色字体的是错误的数据,使用CDC需要额外注意并进行转换。
![[image-20230928164847790.png]]

五、附录

5.1 查询数据库时区SQL

-- mysql 以:time_zone 为准,system_time_zone至服务器时区
show variables like '%time_zone%';-- postgres
show time zone;-- sqlserver
DECLARE
@TimeZone NVARCHAR(255)
EXEC
master.dbo.xp_instance_regread
N'HKEY_LOCAL_MACHINE'
,
N'SYSTEM\CurrentControlSet\Control\TimeZoneInformation'
,
N'TimeZoneKeyName'
,
@TimeZone
OUTPUT
SELECT
@TimeZone -- oracle
select dbtimezone from dual;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/147783.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【深蓝学院】手写VIO第4章--基于滑动窗口算法的 VIO 系统:可观性和 一致性--作业

0. 内容 T1. 参考SLAM14讲P247直接可写&#xff0c;注意 ξ 1 , ξ 2 \xi_1,\xi_2 ξ1​,ξ2​之间有约束&#xff08;关系&#xff09;。 套用舒尔补公式&#xff1a; marg掉 ξ 1 \xi_1 ξ1​之后&#xff0c;信息被传递到 L 1 和 L 2 L_1和L_2 L1​和L2​之间了。 T2. …

IDM(Internet Download Manager)2024中文版下载工具软件

IDM&#xff08;Internet Download Manager&#xff09;&#xff1a;功能强大&#xff0c;下载速度快&#xff0c;支持多线程下载&#xff0c;下载过程中遇到突然断电等情况&#xff0c;可以进行断点续传&#xff0c;很多人因此而首选IDM。 优点&#xff1a; &#xff08;1&a…

抖音聊天对话模板,制作一条一条冒出来的聊天对话短视频

聊天对话模板是一种非常有趣且实用的工具&#xff0c;它主要用于制作抖音聊天记录一条一条冒出来的视频。有了聊天对话模板&#xff0c;你再也不需要费心去写剧本&#xff0c;只需输入一些简单的文案&#xff0c;就能自动生成搞笑对话视频。 聊天对话工具下载&#xff1a; htt…

AI配套的技术: 矢量数据库的概念

一、说明 随着人工智能的快速采用和围绕大型语言模型发生的创新&#xff0c;我们需要在所有这些的中心&#xff0c;能够获取大量数据&#xff0c;将其上下文化&#xff0c;处理它&#xff0c;并使其能够有意义地搜索。 为原生整合生成式 AI 功能而构建的生成式 AI 流程和应用程…

前端——html面试题(一)

文章目录 前言一、说说你对 html 语义化的理解。二、html的标签有哪些三、标签类型1、问题&#xff1a;请说说你对块级元素、行内元素、空元素的理解&#xff0c;它们分别都有哪些常见的标签&#xff1f; 总结 前言 说说对html语义化的理解html的标签标签类型 一、说说你对 ht…

【C语言】汉诺塔 —— 详解

一、介绍 汉诺塔&#xff08;Tower of Hanoi&#xff09;&#xff0c;又称河内塔&#xff0c;是一个源于印度古老传说的益智玩具。大焚天创造世界的时候做了三根金刚石柱子&#xff0c;在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。 大焚天命令婆罗门把圆盘从下面开始按…

2023蓝帽杯半决赛电子取证+CTF部分题解

文章目录 电子取证123456789101112131415 CTFWeb | MyLinuxBotWeb | AirticleShareCrypto | ezrsaPwn | AdminPwn | uafmisc|排排坐吃吃果果 电子取证 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CTF Web | MyLinuxBot Web | AirticleShare import requests import times reques…

lv7 嵌入式开发-网络编程开发 05 字节序及IP地址转换

目录 1 主机字节序和网络字节序 1.1 什么是字节序&#xff1f; 1.2 查看主机字节序 2 字节序转换函数 3 IP地址字节序转换函数 4 练习 1 主机字节序和网络字节序 1.1 什么是字节序&#xff1f; 字节序是指多字节数据在计算机内存中存储或者网络传输时各字节的存储顺序&a…

不做静态化,当部署到服务器上的项目刷新出现404【已解决】

当线上项目刷新出现404页面解决方法&#xff1a; 在nginx配置里加入这样一段代码 try_files $uri $uri/ /index.html; 它的作用是尝试按照给定的顺序访问文件 变量解释 try_files 固定语法 $uri 指代home文件(ip地址后面的路径&#xff0c;假如是127.0.0.1/index/a.png&…

【OpenCV-Torch-dlib-ubuntu】Vm虚拟机linux环境摄像头调用方法与dilb模型探究

前言 随着金秋时节的来临&#xff0c;国庆和中秋的双重喜庆汇聚成一片温暖的节日氛围。在这个美好的时刻&#xff0c;我们有幸共同迎来一次长达8天的假期&#xff0c;为心灵充电&#xff0c;为身体放松&#xff0c;为未来充实自己。今年的国庆不仅仅是家国团聚的时刻&#xff…

信息安全:网络安全审计技术原理与应用.

信息安全&#xff1a;网络安全审计技术原理与应用. 网络安全审计是指对网络信息系统的安全相关活动信息进行获取、记录、存储、分析和利用的工作。网络安全审计的作用在于建立“事后“安全保障措施&#xff0c;保存网络安全事件及行为信息&#xff0c;为网络安全事件分析提供线…

全新UI彩虹外链网盘系统源码(前后端美化模板)

全新UI彩虹外链网盘系统源码前后端美化模板&#xff0c;支持所有格式文件的上传、生成文件外链、图片外链、音乐视频外链等功能&#xff0c;同时还可以自动生成相应的 UBB 代码和 HTML 代码&#xff0c;支持文本、图片、音乐、视频在线预览。这不仅仅是一个网盘&#xff0c;更是…

RabbitMQ学习笔记(消息发布确认,死信队列,集群,交换机,持久化,生产者、消费者)

MQ&#xff08;message queue&#xff09;&#xff1a;本质上是个队列&#xff0c;遵循FIFO原则&#xff0c;队列中存放的是message&#xff0c;是一种跨进程的通信机制&#xff0c;用于上下游传递消息。MQ提供“逻辑解耦物理解耦”的消息通信服务。使用了MQ之后消息发送上游只…

软件设计模式系列之二十四——模板方法模式

在软件设计领域&#xff0c;设计模式是一组被反复使用、多次实践验证的经典问题解决方案。其中&#xff0c;模板方法模式是一种行为型设计模式&#xff0c;用于定义一个算法的骨架&#xff0c;将算法中的某些步骤延迟到子类中实现&#xff0c;从而使子类可以重新定义算法的某些…

lv7 嵌入式开发-网络编程开发 03 TCP/IP与五层体系结构

目录 1 TCP/IP协议族体系结构 1.1 OSI与TCP/IP 1.2 TCP/IP 的体系结构 1.3 TCP/IP 体系结构的另一种表示方法 1.4 沙漏计时器形状的 TCP/IP 协议族 2 五层协议的体系结构 2.1 各层的主要功能 2.2 互联网中客户-服务器工作方式 2.3 同时为多个客户进程提供服务 3 练…

react 网页/app复制分享链接到剪切板,分享到国外各大社交平台,通过WhatsApp方式分享以及SMS短信方式分享链接内容

1.需求 最近在做一个国际网站app,需要把app中某个页面的图文链接分享到国外各大社交平台上(facebook,whatapp,telegram,twitter等),以及通过WhatApp聊天方式分享&#xff0c;和SMS短信方式分享链接内容&#xff0c;该怎么做呢&#xff1f;图示如下: 分享到国外各大社交平台&am…

Kubernetes 学习总结(38)—— Kubernetes 与云原生的联系

一、什么是云原生&#xff1f; 伴随着云计算的浪潮&#xff0c;云原生概念也应运而生&#xff0c;而且火得一塌糊涂&#xff0c;大家经常说云原生&#xff0c;却很少有人告诉你到底什么是云原生&#xff0c;云原生可以理解为“云”“原生”&#xff0c;Cloud 可以理解为应用程…

选择排序算法:简单但有效的排序方法

在计算机科学中&#xff0c;排序算法是基础且重要的主题之一。选择排序&#xff08;Selection Sort&#xff09;是其中一个简单但非常有用的排序算法。本文将详细介绍选择排序的原理和步骤&#xff0c;并提供Java语言的实现示例。 选择排序的原理 选择排序的核心思想是不断地从…

Springboot+Vue+Mysql实现模拟汽车保养系统(附源码)

前言 本项目基于springbootvue搭建的汽车保养的系统&#xff0c;页面较为粗糙&#xff0c;前端好的小伙伴可自行优化。 项目环境 -环境框架后端JDK1.8SpringBootmybatisPlus前端NodeJS16.0Vue2.0ElementPlus数据库MySQL8.0- 数据库设计 数据表备注banner轮播图表car用户汽…

C++ 程序员入门之路——旅程的起点与挑战

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…