怒刷LeetCode的第23天(Java版)

目录

第一题

题目来源

题目内容

解决方法

方法一:贪心算法

方法二:动态规划

方法三:回溯算法

方法四:并查集

第二题

题目来源

题目内容

解决方法

方法一:排序和遍历

方法二:扫描线算法

方法三:栈

第三题

题目来源

题目内容

解决方法

方法一:遍历和比较


第一题

题目来源

55. 跳跃游戏 - 力扣(LeetCode)

题目内容

解决方法

方法一:贪心算法

这个算法使用贪心的思想,通过遍历数组中的每个元素,始终保持一个能够跳到的最远位置 maxPos。在遍历过程中,如果当前位置超过了 maxPos,则说明无法继续跳跃,返回 false。否则,更新 maxPos 的值,将其与 i + nums[i] 比较,取较大值作为新的 maxPos。最后判断 maxPos 是否已经超过或等于最后一个下标,如果是,则返回 true,否则返回 false。

class Solution {
public boolean canJump(int[] nums) {int n = nums.length;int maxPos = 0; // 当前能够跳到的最远位置for (int i = 0; i < n; i++) {if (i > maxPos) {// 如果当前位置超过了能够跳到的最远位置,说明无法继续跳跃,返回falsereturn false;}maxPos = Math.max(maxPos, i + nums[i]);// 更新能够跳到的最远位置if (maxPos >= n - 1) {// 如果能够跳到的最远位置已经超过或等于最后一个下标,说明可以到达最后一个下标,返回truereturn true;}}return false;
}}

复杂度分析:

  • 时间复杂度为 O(n),其中 n 是数组的长度。因为我们只需遍历一次数组即可判断能否到达最后一个下标。
  • 空间复杂度为 O(1),我们只需要保存一个额外的变量 maxPos。

LeetCode运行结果:

方法二:动态规划

除了贪心之外,还可以使用动态规划来解决这个问题。

该算法使用动态规划的思想,定义一个布尔型数组 dp,其中 dp[i] 表示能否从第0个位置跳到第i个位置。

为了计算 dp[i],我们从前往后遍历数组中的每个位置 i,并在其中再次遍历所有位置 j < i。只有当某个位置 j 可以到达,并且从 j 位置可以到达 i 位置时,才有可能到达 i 位置。因此,如果存在一个位置 j 满足条件,即 dp[j] && j + nums[j] >= i,则说明当前位置 i 可以到达,我们将 dp[i] 设置为 true。最终返回 dp[n-1] ,表示能否从第 0 个位置跳到最后一个位置。

class Solution {
public boolean canJump(int[] nums) {int n = nums.length;boolean[] dp = new boolean[n]; // dp[i] 表示能否从第0个位置跳到第i个位置dp[0] = true; // 第0个位置一定可以到达for (int i = 1; i < n; i++) {for (int j = 0; j < i; j++) {if (dp[j] && j + nums[j] >= i) {// 如果前面某一个位置可以到达,并且这个位置可以到达i,那么说明i也可以到达dp[i] = true;break;}}}return dp[n - 1];
}
}

复杂度分析:

  • 时间复杂度为 O(n^2),因为在计算 dp[i] 时,需要遍历之前的所有位置 j,所以总共需要进行 n * (n-1) / 2 次比较。
  • 空间复杂度方面,动态规划算法使用了一个长度为 n 的数组 dp,所以空间复杂度为 O(n)。

与贪心算法相比,动态规划算法的时间复杂度较高,但是更加直观易懂,且可以解决更一般化的跳跃游戏问题。

LeetCode运行结果:

方法三:回溯算法

除了贪心算法和动态规划算法,还可以使用回溯算法来解决跳跃游戏问题。

该算法使用回溯的思想,在每个位置上探索所有可能的跳跃,直到找到能到达最后一个位置的路径,或者发现无法到达的情况。

具体实现中,我们定义一个辅助函数 backtrack,其中 position 参数表示当前所在的位置。首先,在每个位置上计算能够跳跃到的最远位置 furthestJump,然后从最远位置开始反向遍历,尝试从当前位置跳到下一个位置 nextPosition,并递归调用 backtrack 函数。如果最终找到一条路径能够到达最后一个位置,则返回 true;如果所有尝试都失败,则返回 false。

class Solution {
public boolean canJump(int[] nums) {return backtrack(nums, 0);
}private boolean backtrack(int[] nums, int position) {// 到达最后一个位置,返回 trueif (position == nums.length - 1) {return true;}int furthestJump = Math.min(position + nums[position], nums.length - 1);for (int nextPosition = furthestJump; nextPosition > position; nextPosition--) {if (backtrack(nums, nextPosition)) {return true;}}return false;
}}

复杂度分析:

回溯算法的时间复杂度是指数级的,因为在每个位置上都会进行多次递归调用。具体来说,在最坏情况下,即每次跳跃只能跳一个格子,需要进行 n 层递归调用,每层调用需要遍历 nums 数组中的所有元素,因此总时间复杂度是 O(n^n)。

空间复杂度主要取决于递归调用栈的深度,最坏情况下,递归调用栈的深度为数组的长度,所以空间复杂度为 O(n)。

尽管回溯算法能够找到所有可能的路径,但由于其指数级的时间复杂度,对于较大的输入可能会导致超时。因此,在实际应用中,贪心算法和动态规划算法更常用和高效。

LeetCode运行结果:

方法四:并查集

除了贪心算法、动态规划、回溯算法,还可以使用特殊的数据结构来解决跳跃游戏问题,例如并查集。

并查集是一种用于处理元素分组和查找连通性的数据结构。在跳跃游戏问题中,我们可以将每个位置看作一个节点,并按照能够跳跃到的下一个位置建立连通关系。

在实现中,我们首先定义了一个并查集类 UnionFind,其中包含 find、union 和 isConnected 等操作。在构造函数中,将每个位置初始化为其自身的根节点。

接下来,遍历数组 nums 中的每个位置,并计算出从当前位置能够跳跃到的最远位置 maxJump。然后,将当前位置与从 i+1 到 maxJump 的位置进行合并操作,表示它们之间存在连通关系。

最后,判断起点位置 0 和终点位置 n-1 是否连通,即可得出是否能够跳跃到终点位置。

class Solution {
class UnionFind {int[] parent;public UnionFind(int n) {parent = new int[n];for (int i = 0; i < n; i++) {parent[i] = i;}}public int find(int x) {if (parent[x] != x) {parent[x] = find(parent[x]);}return parent[x];}public void union(int x, int y) {int rootX = find(x);int rootY = find(y);if (rootX != rootY) {parent[rootX] = rootY;}}public boolean isConnected(int x, int y) {return find(x) == find(y);}
}public boolean canJump(int[] nums) {if (nums == null || nums.length == 0) {return false;}int n = nums.length;UnionFind uf = new UnionFind(n);for (int i = 0; i < n; i++) {int maxJump = Math.min(i + nums[i], n - 1);for (int j = i + 1; j <= maxJump; j++) {uf.union(i, j);}}return uf.isConnected(0, n - 1);
}}

复杂度分析:

  • 时间复杂度:O(n^2),其中 n 是数组的长度。需要进行两层循环,对每个位置都进行合并操作。
  • 空间复杂度:O(n),需要使用一个并查集来保存每个位置的根节点。

需要注意的是,并查集不适用于所有类型的跳跃游戏问题,只适用于某些特定情况下。在一般情况下,仍然推荐使用贪心算法、动态规划或回溯算法来解决跳跃游戏问题。

LeetCode运行结果:

第二题

题目来源

56. 合并区间 - 力扣(LeetCode)

题目内容

解决方法

方法一:排序和遍历

这个问题可以使用排序和遍历的思路来解决。

  1. 首先,我们对给定的区间集合按照起始位置进行排序。这样可以确保如果有重叠的区间,它们会相邻。
  2. 然后,我们遍历排序后的区间集合,并维护一个当前合并区间的起始位置 start 和结束位置 end。初始时,我们将第一个区间的起始位置和结束位置分别赋值给 start 和 end。
  3. 接下来,我们从第二个区间开始遍历,比较当前区间的起始位置与当前合并区间的结束位置。如果当前区间的起始位置大于当前合并区间的结束位置,说明当前区间与前面的区间没有重叠,我们可以将当前合并区间 [start, end] 加入结果数组中,并更新 start 和 end 为当前区间的起始位置和结束位置。
  4. 否则,如果当前区间的起始位置小于等于当前合并区间的结束位置,说明当前区间与前面的区间有重叠,我们可以更新当前合并区间的结束位置为当前区间的结束位置。这样就实现了区间的合并。
  5. 最后,遍历完成后,将当前合并区间 [start, end] 加入结果数组中即可。
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;class Solution {public int[][] merge(int[][] intervals) {if (intervals.length <= 1) {return intervals;}// 按照区间的起始位置进行排序Arrays.sort(intervals, (a, b) -> Integer.compare(a[0], b[0]));List<int[]> merged = new ArrayList<>();int start = intervals[0][0];int end = intervals[0][1];for (int i = 1; i < intervals.length; i++) {int intervalStart = intervals[i][0];int intervalEnd = intervals[i][1];if (intervalStart <= end) {// 当前区间和前面的区间有重叠,更新当前合并区间的结束位置end = Math.max(end, intervalEnd);} else {// 当前区间和前面的区间没有重叠,将当前合并区间加入结果数组中merged.add(new int[]{start, end});// 更新当前合并区间为当前区间start = intervalStart;end = intervalEnd;}}// 将最后一个合并区间加入结果数组中merged.add(new int[]{start, end});return merged.toArray(new int[merged.size()][]);}
}

复杂度分析:

  • 排序的时间复杂度为O(n log n),其中 n 是区间的数量。这是因为我们对区间进行了一次排序操作。接下来,我们遍历排序后的区间集合,每个区间只会被访问一次。因此,遍历的时间复杂度是O(n),其中 n 是区间的数量。最后,将合并后的区间转换为结果数组的过程需要O(n)的时间复杂度,其中 n 是合并后的区间数量。综上所述,算法的总时间复杂度为O(n log n) + O(n) + O(n) = O(n log n)。
  • 对于空间复杂度,我们使用了一个结果集合来存储合并后的区间,其大小最多为n。因此,空间复杂度为O(n)。

注意,这里不考虑返回结果的空间复杂度。如果按照题目要求返回二维数组作为结果,该空间复杂度为O(n)。

LeetCode运行结果:

方法二:扫描线算法

除了排序和遍历的方法,还可以使用扫描线算法来合并区间。这种方法在处理区间重叠的问题时也很高效。

  1. 首先,我们将所有区间的起始点和结束点提取出来,并分别存储在两个数组中。对于每个点,我们还需要记录它是一个起始点还是结束点。
  2. 然后,我们对这些点进行排序,并使用一个变量 count 来记录当前遍历到的起始点的个数。同时,我们还需要用一个变量 start 来记录当前合并区间的起始位置。
  3. 接着,我们从左到右遍历这些点,并根据每个点的类型来更新 count 的值。当遇到起始点时,说明有一个新的区间开始了,因此 count 加1。当遇到结束点时,说明一个区间结束了,因此 count 减1。
  4. 在遍历过程中,每当 count 的值从0变为1时,说明一个新的合并区间开始了,我们将当前点的位置赋值给 start。每当 count 的值从1变为0时,说明一个合并区间结束了,我们将当前点的位置作为这个区间的结束位置,并将合并区间 [start, end] 加入结果数组中。
  5. 最后,我们就可以得到合并后的区间。
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;class Solution {public int[][] merge(int[][] intervals) {if (intervals.length <= 1) {return intervals;}int n = intervals.length;// 提取所有点的值和类型int[] points = new int[2 * n];int[] types = new int[2 * n];for (int i = 0; i < n; i++) {points[2 * i] = intervals[i][0];types[2 * i] = 1; // 起始点points[2 * i + 1] = intervals[i][1];types[2 * i + 1] = -1; // 结束点}// 对点进行排序Integer[] indices = new Integer[2 * n];for (int i = 0; i < 2 * n; i++) {indices[i] = i;}Arrays.sort(indices, (a, b) -> {if (points[a] != points[b]) {return Integer.compare(points[a], points[b]);}return Integer.compare(types[b], types[a]);});List<int[]> merged = new ArrayList<>();int count = 0;int start = 0;for (int index : indices) {int point = points[index];int type = types[index];if (count == 0) {start = point;}count += type;if (count == 0) {int end = point;merged.add(new int[]{start, end});}}return merged.toArray(new int[merged.size()][]);}
}

复杂度分析:

  • 算法的时间复杂度为O(n log n),其中n是区间的数量。这是因为算法涉及对区间的排序操作,而排序的时间复杂度为O(n log n)。
  • 算法的空间复杂度为O(n),用于存储排序后的区间和合并后的结果。

需要注意的是,在最坏情况下,即所有的区间都不重叠时,算法需要将所有区间都合并为一个大区间,此时时间复杂度为O(n)。

总之,本算法的时间复杂度和空间复杂度都是比较优秀的,是解决区间合并问题的一个非常好的算法。

LeetCode运行结果:

方法三:栈

除了排序和遍历、扫描线算法外,还有一种常见的方法是使用栈来合并区间。

具体实现思路如下:

  1. 首先将所有区间按照起始位置进行排序。
  2. 创建一个栈,将第一个区间放入栈中。
  3. 遍历剩余的区间,如果当前区间的起始位置大于栈顶区间的结束位置,说明两个区间不重叠,直接将当前区间入栈。 否则,将当前区间与栈顶区间合并,更新栈顶区间的结束位置为两者中的较大值。
  4. 遍历完所有区间后,栈中存储的就是合并后的区间。
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Stack;class Solution {public int[][] merge(int[][] intervals) {if (intervals.length <= 1) {return intervals;}// 根据起始位置对区间进行排序Arrays.sort(intervals, (a, b) -> Integer.compare(a[0], b[0]));// 使用栈来合并区间Stack<int[]> stack = new Stack<>();stack.push(intervals[0]);for (int i = 1; i < intervals.length; i++) {int[] currentInterval = intervals[i];int[] topInterval = stack.peek();if (currentInterval[0] > topInterval[1]) {// 当前区间与栈顶区间不重叠,直接入栈stack.push(currentInterval);} else {// 合并当前区间和栈顶区间topInterval[1] = Math.max(topInterval[1], currentInterval[1]);}}// 将栈中的区间转化为数组返回List<int[]> merged = new ArrayList<>(stack);return merged.toArray(new int[merged.size()][]);}
}

复杂度分析:

使用栈的方法时间复杂度取决于排序的时间复杂度,因此为 O(n log n),其中n是区间的数量。空间复杂度为O(n),用于存储合并后的区间。

具体分析如下:

  • 对区间进行排序的时间复杂度为 O(n log n),因为我们需要对所有区间按照起始位置进行排序。
  • 遍历整个区间数组的时间复杂度为 O(n),因为我们只需要遍历每个区间一次,并将合并后的区间存储在一个栈中。
  • 最后将栈中的元素转化为二维数组的时间复杂度为 O(n),因为我们需要遍历栈中所有元素一次,并将它们存储在一个二维数组中。

因此,总的时间复杂度为 O(n log n) + O(n) + O(n) = O(n log n)。空间复杂度为O(n),因为我们需要存储合并后的区间。

需要注意的是,排序操作是这种方法的时间复杂度瓶颈,因此如果输入区间已经有序或者近似有序,则使用这种方法可能更加高效,因为排序的时间复杂度可以达到O(n)。但是一般情况下,排序和遍历、扫描线算法仍然是解决区间合并问题的首选方法。

LeetCode运行结果:

第三题

题目来源

57. 插入区间 - 力扣(LeetCode)

题目内容

解决方法

方法一:遍历和比较

思路与算法:

  1. 首先,根据题目要求,我们可以将给定的区间列表按照起始端点进行排序,这样可以方便后续的处理。

  2. 接下来,我们需要遍历排序后的区间列表,逐个与新的区间进行比较和合并。

  3. 初始化一个结果列表 merged,用于存储最终的合并后的区间。

  4. 遍历排序后的区间列表,对于每个区间 intervals[i],与新的区间 newInterval 进行比较和合并。

    • 如果 intervals[i] 的结束位置小于 newInterval 的起始位置,说明两个区间没有重叠,直接将 intervals[i] 加入 merged 中。

    • 如果 intervals[i] 的起始位置大于 newInterval 的结束位置,说明后面的区间也不会有重叠,直接将 newInterval 和后面的区间加入 merged 中,并返回最终结果。

    • 如果 intervals[i] 和 newInterval 存在重叠,我们需要不断地更新 newInterval 的范围,使其包括当前区间 intervals[i] 及可能的后续重叠区间,直到找到一个不与 newInterval 重叠的区间或者完成遍历。

  5. 最后,将 newInterval 添加到 merged 中,并将剩余的 intervals[i] 依次加入 merged。

  6. 返回 merged 列表中的区间数组作为最终结果。

import java.util.ArrayList;
import java.util.List;class Solution {public int[][] insert(int[][] intervals, int[] newInterval) {List<int[]> merged = new ArrayList<>(); // 用于存储合并后的区间int i = 0;// 将起始位置小于newInterval的区间加入结果列表while (i < intervals.length && intervals[i][1] < newInterval[0]) {merged.add(intervals[i]);i++;}// 合并与newInterval相交的区间while (i < intervals.length && intervals[i][0] <= newInterval[1]) {newInterval[0] = Math.min(newInterval[0], intervals[i][0]);newInterval[1] = Math.max(newInterval[1], intervals[i][1]);i++;}// 将合并后的newInterval加入结果列表merged.add(newInterval);// 将剩余的区间加入结果列表while (i < intervals.length) {merged.add(intervals[i]);i++;}// 将结果列表转换为数组返回return merged.toArray(new int[merged.size()][2]);}
}

复杂度分析:

  • 该算法的时间复杂度为 O(n),其中 n 是区间的个数,因为需要遍历整个区间列表一次。
  • 算法中使用了一个额外的空间 merged 来存储合并后的区间,空间复杂度为 O(n),其中 n 是合并后的区间的个数。

LeetCode运行结果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/148619.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

给列起别名(关键字:as)

MySQL从小白到总裁完整教程目录:https://blog.csdn.net/weixin_67859959/article/details/129334507?spm1001.2014.3001.5502 语法格式: select 列名1 as 别名1, 列名2 as 别名2, 列名n as 别名n from 表名; 说明&#xff1a;可以省略as&#xff0c;列名和别名之间使用空格…

多目标跟踪框架boxmot介绍

引言 boxmot由mikel brostrom开发&#xff0c;用于目标检测&#xff0c;分割和姿态估计模型的SOTA&#xff08;state of art&#xff09;跟踪模块&#xff0c;现已加入python第三方库 PYPI&#xff0c;可用pip包管理器进行安装。 boxmot所支持的跟踪器采用外观特征识别方法&am…

【动手学深度学习-Pytorch版】Transformer代码总结

本文是纯纯的撸代码讲解&#xff0c;没有任何Transformer的基础内容~ 是从0榨干Transformer代码系列&#xff0c;借用的是李沐老师上课时讲解的代码。 本文是根据每个模块的实现过程来进行讲解的。如果您想获取关于Transformer具体的实现细节&#xff08;不含代码&#xff09;可…

国庆中秋特辑(七)Java软件工程师常见20道编程面试题

以下是中高级Java软件工程师常见编程面试题&#xff0c;共有20道。 如何判断一个数组是否为有序数组&#xff1f; 答案&#xff1a;可以通过一次遍历&#xff0c;比较相邻元素的大小。如果发现相邻元素的大小顺序不对&#xff0c;则数组不是有序数组。 public boolean isSort…

【Unity】两种方式实现弹跳平台/反弹玩家(玩家触发与物体自身触发事件实现蹦床的物理效果)

一、声明 只实现物理反弹的效果&#xff0c;不实现蹦床会有的视觉拉伸效果&#xff0c;请自行找相关代码 二、实现 经过我的实践&#xff0c;我发现要想实现一个平台反弹的效果&#xff0c;要么就选择给player添加一个物理材质&#xff08;平台加了没用&#xff09;&#xff0…

arduino嵌入式1,LED闪烁案例

CVE系列在等等吧&#xff0c;环境我有点懒得搭建了 文章目录 前言一、anduino是什么玩意儿&#xff1f;二、使用步骤1.找蓝图/画蓝图2.写入数据成果 总结 前言 最近在学习嵌入式开发&#xff0c;我的单片机到了&#xff0c;然后我就沉迷于嵌入式开发的环境中 提示&#xff1a;…

Linux嵌入式学习之Ubuntu入门(六)shell脚本详解

系列文章内容 Linux嵌入式学习之Ubuntu入门&#xff08;一&#xff09;基本命令、软件安装、文件结构、编辑器介绍 Linux嵌入式学习之Ubuntu入门&#xff08;二&#xff09;磁盘文件介绍及分区、格式化等 Linux嵌入式学习之Ubuntu入门&#xff08;三&#xff09;用户、用户组…

go-fastdfs分布式文件存储集群搭建和测试

一、官方文件 https://sjqzhang.github.io/go-fastdfs/#character2、集群原理 小集群原理&#xff1a; 大集群原理 二、服务端集群部署 1、在集群每个节点机器上下载安装包 (建议使用最新稳定版本&#xff09; wget --no-check-certificate https://github.com/sjqzhang/go…

【Linux基础】Linux发展史

&#x1f449;系列专栏&#xff1a;【Linux基础】 &#x1f648;个人主页&#xff1a;sunny-ll 一、前言 本篇主要介绍Linux的发展历史&#xff0c;这里并不需要我们掌握&#xff0c;但是作为一个合格的Linux学习者与操作者&#xff0c;这些东西是需要了解的&#xff0c;而且…

docker基本命令

一、镜像操作 1、搜索镜像 docker search 仓库名/镜像名 2、下载镜像 docker pull 仓库名/镜像名&#xff1a;标签 若不指明标签&#xff0c;则表示下载最新版本的【标签为latest】 3、查看镜像 docker images 4、创建镜像 docker tag 原仓库/镜像名&#xff1a;原标名 新…

机器人制作开源方案 | 家庭清扫拾物机器人

作者&#xff1a;罗诚、李旭洋、胡旭、符粒楷 单位&#xff1a;南昌交通学院 人工智能学院 指导老师&#xff1a;揭吁菡 在家庭中我们有时无法到一些低矮阴暗的地方进行探索&#xff0c;比如茶几下或者床底下&#xff0c;特别是在部分家庭中&#xff0c;如果没有及时对这些阴…

【网络安全】2023年堡垒机品牌大全

随着大家网络安全意识的增加&#xff0c;随着国家等保政策的严格执行&#xff0c;越来越多的企业开始采购堡垒机。这里就给大家总结了部分堡垒机品牌&#xff0c;让大家参考参考。 2023年堡垒机品牌大全 1、行云堡垒 2、JumpServer 3、安恒 4、骞云 5、齐治 6、阿里云 …

【应用层协议】HTTPS的加密流程

文章目录 1. 认识HTTPS2. 密文3. HTTPS加密流程3.1 对称加密3.2 非对称加密3.3 证书 1. 认识HTTPS HTTPS&#xff08;超文本传输协议安全&#xff09;也是一个应用层协议&#xff0c;它是在HTTP协议的基础上引入了一个加密层。 也就是HTTP协议传输文本的方式是明文&#xff0c;…

【Docker Compose】Docker Compose 的安装,使用以及实现微服务集群的部署

文章目录 前言&#xff1a;Docker 部署存在的问题一、 初识 Docker Compose1.1 什么是 Docker Compose1.2 在 CentOS 上安装 Docker Compose 二、深入了解 Docker Compose 文件2.1 Docker Compose 文件概述2.2 Docker Compose 文件详解2.3 示例&#xff1a;编写 Docker Compose…

Flutter AI五子棋

前言 在上一篇文章中&#xff0c;讲解了如何实现双人在本地对战的五子棋&#xff0c;但是只有一个人的时候就不太好玩&#xff0c;同时博主也没有把五子棋相关的文章写过瘾。那么这篇文章&#xff0c;我们来实现一个功能更加丰富的五子棋吧&#xff01;在设计五子棋的算法方面&…

mysql5.7停止维护时间

mysql5.7将于2023年10月停止官网支持和更新&#xff1b;老项目要准备升级&#xff0c;新项目的mysql必须是mysql8.0&#xff08;2023-10&#xff09; 官方升级咨询地址 oracle官方升级咨询地址https://go.oracle.com/LP116153?elq_mid247718&sh1518132002061316121320310…

vue、vuex状态管理

使用步骤&#xff1a; 1、安装vuex 口诀&#xff1a;“233”、“344” 数字分别对应&#xff0c;“vue版本&#xff0c;vue 路由版本、vuex 版本”。 所以这里了使用vuex3版本&#xff1a; yarn add vuex3 2、创建仓库文件 编写如下&#xff1a; // 这个文件用于存放vuex的…

JAVA面经整理(7)

一)什么是AQS&#xff1f; 1)AQS也被称之为是抽象同步队列&#xff0c;它是JUC包底下的多个组件的底层实现&#xff0c;Lock&#xff0c;CountDownLatch和Semphore底层都使用到了AQS AQS的核心思想就是给予一个等待队列和同步状态来实现的&#xff0c;它的内部使用一个先进先出…

机器视觉工程师努力工作确实不一定涨工资,但是努力工作,确实有很大可能涨工资

机器视觉工程师努力工作确实不一定涨工资&#xff0c;但是努力工作&#xff0c;确实有很大可能涨工资 其实在我们机器视觉工程张薪资方面&#xff0c;正常是一年两次调整周期。

arm 汇编基础指令

实现1-100求和 .text .globl _start_start:mov r0, #1 i&#xff0c;i1mov r1, #100 条件变量i<100mov r2, #0 sumLoop: 循环cmp r0,r1 比较r0和r1的大小bhi stop 当r0>r1时&#xff0c;跳到stop标签a…