联合概率和条件概率的区别和联系

联合概率P(A∩B)

两个事件一起(或依次)发生的概率。

例如:掷硬币的概率是 ¹⁄₂ = 50%,翻转 2 个公平硬币的概率是 ¹⁄₂ × ¹⁄₂ = ¹⁄₄ = 25%(这也可以理解为 50% 的 50%)

P(A ∩ B) = P(A) ⋅ P(B)

对于 2 个硬币,样本空间将是 4 {HH,HT,TH,TT},如果第一个硬币是 H,那么剩余的结果是 2 {HT,HH}。这意味着第一个事件可能会影响第二个事件。

例如:从 10 个不同颜色的球中选出 1 个绿球的概率是 ¹⁄₁₀, 10个球中选2个绿球的概率(2个绿、2个蓝、2个红、4个黄)²⁄₁₀ × ¹⁄₉(这个排列组合会更清楚)

简而言之。当第一个事件的发生影响第二个事件的发生时,它们是相关事件。

P(A ∩ B) = P(A) ⋅ P(B|A)

这里,P(B|A) 被读作 在 A 之后发生 B 的概率。这是当 A 事件已经发生时发生 B 事件的概率。这称为条件概率。

联合概率和条件概率

例:城市中的一个三角形区域被化学工业污染。有2%的孩子住在这个三角区。其中 14% 的检测过量有毒金属呈阳性,而不在三角区居住的城市儿童的阳性检测率仅为1%。

考虑:T 表示居住在三角形区域的人,并且P 表示检测呈阳性的人。

当它说区域中 14% 的孩子测试为阳性时,这意味着:如果从三角形中随机抽取一个孩子,它将有 14% 的机会测试为阳性。这是 P(P∣T)

P(P∩T) 的解释是自整个人口中随机选择后即在三角形中并且测试为阳性的概率。

用维恩图理解

P(A∩B) 是 A 和 B 都发生的概率(没有任何附加信息。)

P(A|B) 是如果我们知道 B 已经发生,A发生的概率。

让我们通过一个例子来理解它。一个班有60名学生。33个喜欢蓝色,23个喜欢红色,20个学生喜欢这两种颜色,4个学生喜欢橙色。

1. 选出一个同时喜欢红和蓝颜色的学生的概率是多少?

这非常简单:P(B ∩ R) = ²⁰⁄₆₀

2. 从喜欢红色的学生中选出一个喜欢蓝色的学生的概率是多少?

我们将检查从特定学生集中选择具有特定选择的学生的概率。

⇒ 喜欢红色的学生有 23 人。其中有 20 个喜欢这两种颜色。

P(B | R) =²⁰⁄₂₃

通过维恩图和上面的例子,我们可以说在这两种情况下,事件的结果都没有改变,但样本空间正在减少。因此:

𝐏(𝐀∣𝐁) ≥𝐏(𝐀∩𝐁)

更多的例子

例子1:

 

假设掷两个骰子,第一个得到6第二个得到4的概率是多少? 假设掷两个骰子,如果两个骰子的数字之和是10,第二个骰子显示4的概率是多少?

在第一种情况下,没有给出定义样本空间的条件。所以我们从两个骰子中取可能的结果,也就是36。

P(a∩b) = 2/36

在第二种情况下,对于样本空间有一个条件,即骰子上的两个数的样本空间总和为10。样本空间的总元素只有3 {4+6,5+5,6+4}

P(a | b) = 1/3

例子2:

一个人正在过马路,我们想计算他被路过的汽车撞到的概率,这取决于交通灯的颜色。

设H代表这个人是否被撞,C代表红绿灯的颜色。

H ={撞,不撞}

C ={红、黄、绿}。

在这种情况下,你被撞到的条件概率是概率P(H=撞到|C=红色),即假设灯是红色的,你被车撞到的概率有多大。

即使不是红灯,也有可能有人被撞到,但这里我们只考虑红灯时发生的车祸。

而联合概率则是P(H=撞到,C=红色),即红灯亮时你被车撞到的概率。

假设一个人横穿马路 3 次而没有发生事故。但第7次被撞了。如果使用联合概率,我们还想知道当他被撞时灯是红色的概率是多少。

现在如果我们说,他在红灯时过马路10次,被车撞了7次。在这种情况下,样本空间的条件是已经给定的。

例子3:

研究人员调查了100名学生,询问他们最想拥有哪种超能力。这个双表格显示了参与调查的学生样本的数据:

我们来找出不同的概率:

1. 找出学生选择飞行作为他们超能力的概率。

没有给出样本空间的条件。我们取所有学生(100)来计算概率。

P(fly) = 38/100 = 0.38

2. 求出该学生是男性的概率。

同样,没有给出样本空间的条件。我们取所有学生(100)来计算概率。

P(male)= 48/100 = 0.48

3. 求选择飞行作为超能力时,这个学生是男性的概率。

这很有趣,这个问题的样本空间是一群想要飞行的学生。n (S) = 38,38名学生中有26名是男性。所以:

P(male∣fly) = 26/38 = 0.68

或者用条件概率公式:

P(male∩fly) =选择飞行男生/总人数= 26/100

P(male∣fly)= P(male∩fly)/ P(fly)= 26/38 = 0.68

4. 假设该学生是男性,求出该学生选择飞行的概率。

这和上一题差不多。这个问题的样本空间为n(S) = 48。在48名学生中,有26人选择飞行。所以:

P(male∣fly) = 26/48 =0.68

5、I代表一个学生选择隐身作为超能力的事件,F代表一个学生是女性的事件。

解释P(I∣F)≈0.62的含义;

  • 大约62%的女性选择隐身作为她们的超能力。

  • 在选择隐身作为自己超能力的人中,大约有62%是女性。

解释如下:

n(S) =所有女性,I∣F可以被解读为在所有女性中选择隐身的人。

总的来说,我们可以理解为大约62%的女性选择隐身作为她们的超能力。所以表述a是正确的。

例子4:

下表是将各国按地区和平均创业成本(占某一年人均国民总收入(GNI)的百分比)进行了分类。

考虑到如果该国的创业成本归类为高,那么找出该国位于南亚地区的概率。

这个问题属于条件概率,因为给定了选择样本空间的条件:创业成本高的国家 n(S) = 87(样本空间),  以上样本空间中的南亚地区国家,即创业成本高的国家:7

所以,从创业成本高的国家中选择南亚地区国家的概率= 7/87

如果我们用条件概率的公式:

我们可以先计算 P(A ∩ B),即从所有南亚地区且创业成本高的国家中选择一个国家的概率。

 

这样的国家有7个。由于没有定义选择样本空间的条件,我们将采用全部空间,即 n(S) = 188。

P(A ∩ B) = 7/188

现在,我们需要计算一个国家创业成本高的概率。这很简单:

P(A) = 87/188

使用公式 得到P(B|A) = 7/87

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/148652.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

8章:scrapy框架

文章目录 scrapy框架如何学习框架?什么是scarpy?scrapy的使用步骤1.先转到想创建工程的目录下:cd ...2.创建一个工程3.创建之后要转到工程目录下4.在spiders子目录中创建一个爬虫文件5.执行工程setting文件中的参数 scrapy数据解析scrapy持久…

超市便利店批发零售小程序商城的作用是什么

超市便利店甚至是商场,所售卖的产品广而多,其线上线下商家数量也非常庞大,对传统超市便利店来说,往往会优先发力线下经营,然而随着互联网电商冲击,传统线下经营也面临:拓客引流难、产品销售难、…

子监督学习的知识点总结

监督学习 机器学习中最常见的方法是监督学习。在监督学习中,我们得到一组标记数据(X,Y),即(特征,标签),我们的任务是学习它们之间的关系。但是这种方法并不总是易于处理&…

Vue中如何进行拖拽与排序功能实现

在Vue中实现拖拽与排序功能 在Web应用程序中,实现拖拽和排序功能是非常常见的需求,特别是在管理界面、任务列表和图形用户界面等方面。Vue.js作为一个流行的JavaScript框架,提供了许多工具和库来简化拖拽和排序功能的实现。本文将介绍如何使…

算法:最近公共祖先(LCA)

有根树中,每一个点都有好几个祖先(在往根节点走的过程中遇到的都是它的祖先),一般化,把本身也称为它的祖先 对于两个点,离它们最近的一个公共祖先被称为最近公共祖先 法一:向上标记法&#xf…

Android Studio实现简易计算器(带横竖屏,深色浅色模式,更该按钮颜色,selector,style的使用)

目录 前言 运行结果: 运行截屏(p50e) apk文件 源码文件 项目结构 总览 MainActivity.java drawable 更改图标的方法: blackbutton.xml bluebuttons.xml greybutton.xml orangebuttons.xml whitebutton.xml layout 布…

Lagrange插值法实验:求拉格朗日插值多项式和对应x的近似值matlab实现(内附代码)

一、实验要求 已知函数表: 求出Lagrange 插值多项式,并计算x1.2处的y的近似值。 二、MATLAB代码 求解多项式: X input(请输入横坐标向量X:\nX); % 获取用户输入的横坐标向量 Y input(请输入纵坐标向量Y:\nY); % 获取用户输入的纵坐标…

简单走近ChatGPT

目录 一、ChatGPT整体背景认知 (一)ChatGPT引起关注的原因 (二)与其他公司的竞争情况 二、NLP学习范式的发展 (一)规则和机器学习时期 (二)基于神经网络的监督学习时期 &…

竞赛 机器学习股票大数据量化分析与预测系统 - python 竞赛

文章目录 0 前言1 课题背景2 实现效果UI界面设计web预测界面RSRS选股界面 3 软件架构4 工具介绍Flask框架MySQL数据库LSTM 5 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 机器学习股票大数据量化分析与预测系统 该项目较为新颖&am…

2023计算机保研——双非上岸酒吧舞

我大概是从22年10月份开始写博客的,当时因为本校专业的培养方案的原因,课程很多,有些知识纸质记录很不方便,于是选择了打破了自己的成见使用博客来记录学习生活。对于我个人而言,保研生活在前一大半过程中都比较艰难&a…

System Generator学习——时间和资源分析

文章目录 前言一、目标二、步骤三、步骤 1 :系统生成器的时序分析1、时序分析2、解决时间违规问题 四、步骤 2 :系统生成器中的资源分析总结 前言 在本节实验中,你将学习如何通过在 Simulink 中进行仿真来验证设计的功能,以确保在…

MapStruct初窥门径

一、介绍 MapStruct相比于BeanUtils性能更高&#xff0c;能够实现DO&#xff0c;DTO&#xff0c;VO之间的转换&#xff0c;达到解耦合的目的 二、使用前提 添加依赖 <dependency><groupId>org.mapstruct</groupId><artifactId>mapstruct</artifa…

学习记忆——宫殿篇——记忆宫殿——数字编码——扑克牌记忆

扑克牌我们可以通过以下3点进行识记&#xff1a; 1、先把扑克牌进行编码转换 2、确定要进行记忆的记忆宫殿 3、把扑克牌与记忆宫殿一一对应 首先54张扑克牌除去大小王后剩下52张&#xff0c;因为世界赛不需要记忆大小王。52张扑克牌都有对应的编码&#xff0c;每2张扑克牌对应…

JVM篇---第三篇

系列文章目录 文章目录 系列文章目录一、什么是Java虚拟机?为什么Java被称作是“平台无关的编程语言”?二、Java内存结构三、说说对象分配规则一、什么是Java虚拟机?为什么Java被称作是“平台无关的编程语言”? Java虚拟机是一个可以执行Java字节码的虚拟机进程。Java源文…

如何将图片存到数据库(以mysql为例), 使用ORM Bee更加简单

如何将图片存到数据库 1. 创建数据库: 2. 生成Javabean public class ImageExam implements Serializable {private static final long serialVersionUID 1596686274309L;private Integer id;private String name; // private Blob image;private InputStream image; //将In…

【Java】抽象类案例

需求&#xff1a;加入我们在开发一个系统时 需要对员工&#xff08;Employee&#xff09;类进行设计&#xff0c;员工包含3个属性&#xff1a;姓名、工号&#xff08;number&#xff09;以及工资&#xff08;salary&#xff09;。 经理&#xff08;Manager&#xff09;也是员工…

【物联网】STM32的中断机制不清楚?看这篇文章就足够了

在嵌入式系统中&#xff0c;中断是一种重要的机制&#xff0c;用于处理来自外部设备的异步事件。STM32系列微控制器提供了强大的中断控制器&#xff0c;可以方便地处理各种外部中断和内部中断。本文将详细介绍STM32中断的结构和使用方法。 文章目录 1. 什么叫中断2. 中断优先级…

怒刷LeetCode的第23天(Java版)

目录 第一题 题目来源 题目内容 解决方法 方法一&#xff1a;贪心算法 方法二&#xff1a;动态规划 方法三&#xff1a;回溯算法 方法四&#xff1a;并查集 第二题 题目来源 题目内容 解决方法 方法一&#xff1a;排序和遍历 方法二&#xff1a;扫描线算法 方法…

给列起别名(关键字:as)

MySQL从小白到总裁完整教程目录:https://blog.csdn.net/weixin_67859959/article/details/129334507?spm1001.2014.3001.5502 语法格式: select 列名1 as 别名1, 列名2 as 别名2, 列名n as 别名n from 表名; 说明&#xff1a;可以省略as&#xff0c;列名和别名之间使用空格…

多目标跟踪框架boxmot介绍

引言 boxmot由mikel brostrom开发&#xff0c;用于目标检测&#xff0c;分割和姿态估计模型的SOTA&#xff08;state of art&#xff09;跟踪模块&#xff0c;现已加入python第三方库 PYPI&#xff0c;可用pip包管理器进行安装。 boxmot所支持的跟踪器采用外观特征识别方法&am…