计算机竞赛 题目:基于大数据的用户画像分析系统 数据分析 开题

文章目录

  • 1 前言
  • 2 用户画像分析概述
    • 2.1 用户画像构建的相关技术
    • 2.2 标签体系
    • 2.3 标签优先级
  • 3 实站 - 百货商场用户画像描述与价值分析
    • 3.1 数据格式
    • 3.2 数据预处理
    • 3.3 会员年龄构成
    • 3.4 订单占比 消费画像
    • 3.5 季度偏好画像
    • 3.6 会员用户画像与特征
      • 3.6.1 构建会员用户业务特征标签
      • 3.6.2 会员用户词云分析
  • 4 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

基于大数据的用户画像分析系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 用户画像分析概述

用户画像是指根据用户的属性、用户偏好、生活习惯、用户行为等信息而抽象出来的标签化用户模型。通俗说就是给用户打标签,而标签是通过对用户信息分析而来的高度精炼的特征标识。通过打标签可以利用一些高度概括、容易理解的特征来描述用户,可以让人更容易理解用户,并且可以方便计算机处理。

标签化就是数据的抽象能力

  • 互联网下半场精细化运营将是长久的主题
  • 用户是根本,也是数据分析的出发点

2.1 用户画像构建的相关技术

我们对构建用户画像的方法进行总结归纳,发现用户画像的构建一般可以分为目标分析、体系构建、画像建立三步。

画像构建中用到的技术有数据统计、机器学习和自然语言处理技术(NLP)等,下如图所示。具体的画像构建方法学长会在后面的部分详细介绍。

在这里插入图片描述

按照数据流处理阶段划分用户画像建模的过程,分为三个层,每一层次,都需要打上不同的标签。

  • 数据层:用户消费行为的标签。打上事实标签,作为数据客观的记录
  • 算法层:透过行为算出的用户建模。打上模型标签,作为用户画像的分类
  • 业务层:指的是获客、粘客、留客的手段。打上预测标签,作为业务关联的结果

2.2 标签体系

目前主流的标签体系都是层次化的,如下图所示。首先标签分为几个大类,每个大类下进行逐层细分。在构建标签时,我们只需要构建最下层的标签,就能够映射到上面两级标签。

上层标签都是抽象的标签集合,一般没有实用意义,只有统计意义。例如我们可以统计有人口属性标签的用户比例,但用户有人口属性标签本身对广告投

在这里插入图片描述

2.3 标签优先级

构建的优先级需要综合考虑业务需求、构建难易程度等,业务需求各有不同,这里介绍的优先级排序方法主要依据构建的难易程度和各类标签的依存关系,优先级如下图所示:

在这里插入图片描述

我们把标签分为三类,这三类标签有较大的差异,构建时用到的技术差别也很大。第一类是人口属性,这一类标签比较稳定,一旦建立很长一段时间基本不用更新,标签体系也比较固定;第二类是兴趣属性,这类标签随时间变化很快,标签有很强的时效性,标签体系也不固定;第三类是地理属性,这一类标签的时效性跨度很大,如GPS轨迹标签需要做到实时更新,而常住地标签一般可以几个月不用更新,挖掘的方法和前面两类也大有不同,如图所示:

在这里插入图片描述

3 实站 - 百货商场用户画像描述与价值分析

3.1 数据格式

在这里插入图片描述

3.2 数据预处理

部分代码

# 作者:丹成学长 Q746876041
import matplotlib
import warnings
import re
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as pltfrom sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from sklearn.preprocessing import StandardScaler, MinMaxScaler%matplotlib inline
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.rcParams['axes.unicode_minus'] = False
matplotlib.rcParams.update({'font.size' : 16})
plt.style.use('ggplot')
warnings.filterwarnings('ignore')df_cum = pd.read_excel('./cumcm2018c1.xlsx')
df_cum
# 先来对会员信息表进行分析
print('会员信息表一共有{}行记录,{}列字段'.format(df_cum.shape[0], df_cum.shape[1]))
print('数据缺失的情况为:\n{}'.format(df_cum.isnull().mean()))
print('会员卡号(不重复)有{}条记录'.format(len(df_cum['会员卡号'].unique())))# 会员信息表去重
df_cum.drop_duplicates(subset = '会员卡号', inplace = True)
print('会员卡号(去重)有{}条记录'.format(len(df_cum['会员卡号'].unique())))# 去除登记时间的缺失值,不能直接dropna,因为我们需要保留一定的数据集进行后续的LRFM建模操作
df_cum.dropna(subset = ['登记时间'], inplace = True)
print('df_cum(去重和去缺失)有{}条记录'.format(df_cum.shape[0]))# 性别上缺失的比例较少,所以下面采用众数填充的方法
df_cum['性别'].fillna(df_cum['性别'].mode().values[0], inplace = True)
df_cum.info()# 由于出生日期这一列的缺失值过多,且存在较多的异常值,不能贸然删除
# 故下面另建一个数据集L来保存“出生日期”和“性别”信息,方便下面对会员的性别和年龄信息进行统计
L = pd.DataFrame(df_cum.loc[df_cum['出生日期'].notnull(), ['出生日期', '性别']])
L['年龄'] = L['出生日期'].astype(str).apply(lambda x: x[:3] + '0')
L.drop('出生日期', axis = 1, inplace = True)
L['年龄'].value_counts()
...()....

3.3 会员年龄构成

# 使用上述预处理后的数据集L,包含两个字段,分别是“年龄”和“性别”,先画出年龄的条形图
fig, axs = plt.subplots(1, 2, figsize = (16, 7), dpi = 100)
# 绘制条形图
ax = sns.countplot(x = '年龄', data = L, ax = axs[0])
# 设置数字标签
for p in ax.patches:height = p.get_height()ax.text(x = p.get_x() + (p.get_width() / 2), y = height + 500, s = '{:.0f}'.format(height), ha = 'center')
axs[0].set_title('会员的出生年代')
# 绘制饼图
axs[1].pie(sex_sort, labels = sex_sort.index, wedgeprops = {'width': 0.4}, counterclock = False, autopct = '%.2f%%', pctdistance = 0.8)
axs[1].set_title('会员的男女比例')
plt.savefig('./会员出生年代及男女比例情况.png')

在这里插入图片描述

# 绘制各个年龄段的饼图
plt.figure(figsize = (8, 6), dpi = 100)
plt.pie(res.values, labels = ['中年', '青年', '老年'], autopct = '%.2f%%', pctdistance = 0.8, counterclock = False, wedgeprops = {'width': 0.4})
plt.title('会员的年龄分布')
plt.savefig('./会员的年龄分布.png')

在这里插入图片描述

3.4 订单占比 消费画像

# 由于相同的单据号可能不是同一笔消费,以“消费产生的时间”为分组依据,我们可以知道有多少个不同的消费时间,即消费的订单数
fig, axs = plt.subplots(1, 2, figsize = (12, 7), dpi = 100)
axs[0].pie([len(df1.loc[df1['会员'] == 1, '消费产生的时间'].unique()), len(df1.loc[df1['会员'] == 0, '消费产生的时间'].unique())],labels = ['会员', '非会员'], wedgeprops = {'width': 0.4}, counterclock = False, autopct = '%.2f%%', pctdistance = 0.8)
axs[0].set_title('总订单占比')
axs[1].pie([df1.loc[df1['会员'] == 1, '消费金额'].sum(), df1.loc[df1['会员'] == 0, '消费金额'].sum()], labels = ['会员', '非会员'], wedgeprops = {'width': 0.4}, counterclock = False, autopct = '%.2f%%', pctdistance = 0.8)
axs[1].set_title('总消费金额占比')
plt.savefig('./总订单和总消费占比情况.png')

在这里插入图片描述

消费偏好:

我觉得会稍微偏向与消费的频次,相当于消费的订单数,因为每笔消费订单其中所包含的消费商品和金额都是不太一样的,有的订单所消费的商品很少,但金额却很大,有的消费的商品很多,但金额却特别少。如果单纯以总金额来衡量的话,会员下次消费时间可能会很长,消费频次估计也会相对变小(因为这次所购买的商品已经足够用了)。所以我会偏向于认为一个用户消费频次(订单数)越多,就越能带来更多的价值,从另一方面上来讲,用户也不可能一直都是消费低端产品,消费频次越多用户的粘性也会相对比较大

3.5 季度偏好画像

# 前提假设:2015-2018年之间,消费者偏好在时间上不会发生太大的变化(均值),消费偏好——>以不同时间的订单数来衡量
quarters_list, quarters_order = orders(df_vip, '季度', 3)
days_list, days_order = orders(df_vip, '天', 36)
time_list = [quarters_list, days_list]
order_list = [quarters_order, days_order]
maxindex_list = [quarters_order.index(max(quarters_order)), days_order.index(max(days_order))]
fig, axs = plt.subplots(1, 2, figsize = (18, 7), dpi = 100)
colors = np.random.choice(['r', 'g', 'b', 'orange', 'y'], replace = False, size = len(axs))
titles = ['季度的均值消费偏好', '天数的均值消费偏好']
labels = ['季度', '天数']
for i in range(len(axs)):ax = axs[i]ax.plot(time_list[i], order_list[i], linestyle = '-.', c = colors[i], marker = 'o', alpha = 0.85)ax.axvline(x = time_list[i][maxindex_list[i]], linestyle = '--', c = 'k', alpha = 0.8)ax.set_title(titles[i])ax.set_xlabel(labels[i])ax.set_ylabel('均值消费订单数')print(f'{titles[i]}最优的时间为: {time_list[i][maxindex_list[i]]}\t 对应的均值消费订单数为: {order_list[i][maxindex_list[i]]}')
plt.savefig('./季度和天数的均值消费偏好情况.png')

在这里插入图片描述

# 自定义函数来绘制不同年份之间的的季度或天数的消费订单差异
def plot_qd(df, label_y, label_m, nrow, ncol):"""df: 为DataFrame的数据集label_y: 为年份的字段标签label_m: 为标签的一个列表n_row: 图的行数n_col: 图的列数"""# 必须去掉最后一年的数据,只能对2015-2017之间的数据进行分析y_list = np.sort(df[label_y].unique().tolist())[:-1]colors = np.random.choice(['r', 'g', 'b', 'orange', 'y', 'k', 'c', 'm'], replace = False, size = len(y_list))markers = ['o', '^', 'v']plt.figure(figsize = (8, 6), dpi = 100)fig, axs = plt.subplots(nrow, ncol, figsize = (16, 7), dpi = 100)for k in range(len(label_m)):m_list = np.sort(df[label_m[k]].unique().tolist())for i in range(len(y_list)):order_m = []index1 = df[label_y] == y_list[i]for j in range(len(m_list)):index2 = df[label_m[k]] == m_list[j]order_m.append(len(df.loc[index1 & index2, '消费产生的时间'].unique()))axs[k].plot(m_list, order_m, linestyle ='-.', c = colors[i], alpha = 0.8, marker = markers[i], label = y_list[i], markersize = 4)axs[k].set_xlabel(f'{label_m[k]}')axs[k].set_ylabel('消费订单数')axs[k].set_title(f'2015-2018年会员的{label_m[k]}消费订单差异')axs[k].legend()plt.savefig(f'./2015-2018年会员的{"和".join(label_m)}消费订单差异.png')

在这里插入图片描述

# 自定义函数来绘制不同年份之间的月份消费订单差异
def plot_ym(df, label_y, label_m):"""df: 为DataFrame的数据集label_y: 为年份的字段标签label_m: 为月份的字段标签"""# 必须去掉最后一年的数据,只能对2015-2017之间的数据进行分析y_list = np.sort(df[label_y].unique().tolist())[:-1]m_list = np.sort(df[label_m].unique().tolist())colors = np.random.choice(['r', 'g', 'b', 'orange', 'y'], replace = False, size = len(y_list))markers = ['o', '^', 'v']fig, axs = plt.subplots(1, 2, figsize = (18, 8), dpi = 100)for i in range(len(y_list)):order_m = []money_m = []index1 = df[label_y] == y_list[i]for j in range(len(m_list)):index2 = df[label_m] == m_list[j]order_m.append(len(df.loc[index1 & index2, '消费产生的时间'].unique()))money_m.append(df.loc[index1 & index2, '消费金额'].sum())axs[0].plot(m_list, order_m, linestyle ='-.', c = colors[i], alpha = 0.8, marker = markers[i], label = y_list[i])axs[1].plot(m_list, money_m, linestyle ='-.', c = colors[i], alpha = 0.8, marker = markers[i], label = y_list[i])axs[0].set_xlabel('月份')axs[0].set_ylabel('消费订单数')axs[0].set_title('2015-2018年会员的消费订单差异')axs[1].set_xlabel('月份')axs[1].set_ylabel('消费金额总数')axs[1].set_title('2015-2018年会员的消费金额差异')axs[0].legend()axs[1].legend()plt.savefig('./2015-2018年会员的消费订单和金额差异.png')

在这里插入图片描述

maxindex = order_nums.index(max(order_nums))
plt.figure(figsize = (8, 6), dpi = 100)
plt.plot(x_list, order_nums, linestyle = '-.', marker = 'o', c = 'm', alpha = 0.8)
plt.xlabel('小时')
plt.ylabel('消费订单')
plt.axvline(x = x_list[maxindex], linestyle = '--', c = 'r', alpha = 0.6)
plt.title('2015-2018年各段小时的销售订单数')
plt.savefig('./2015-2018年各段小时的销售订单数.png')

在这里插入图片描述

3.6 会员用户画像与特征

3.6.1 构建会员用户业务特征标签

# 取DataFrame之后转置取values得到一个列表,再绘制对应的词云,可以自定义一个绘制词云的函数,输入参数为df和会员卡号
"""
L: 入会程度(新用户、中等用户、老用户)
R: 最近购买的时间(月)
F: 消费频数(低频、中频、高频)
M: 消费总金额(高消费、中消费、低消费)
P: 积分(高、中、低)
S: 消费时间偏好(凌晨、上午、中午、下午、晚上)
X:性别
"""# 开始对数据进行分组
"""
L(入会程度):3个月以下为新用户,4-12个月为中等用户,13个月以上为老用户
R(最近购买的时间)
F(消费频次):次数20次以上的为高频消费,6-19次为中频消费,5次以下为低频消费
M(消费金额):10万以上为高等消费,1万-10万为中等消费,1万以下为低等消费
P(消费积分):10万以上为高等积分用户,1万-10万为中等积分用户,1万以下为低等积分用户
"""
df_profile = pd.DataFrame()
df_profile['会员卡号'] = df['id']
df_profile['性别'] = df['X']
df_profile['消费偏好'] = df['S'].apply(lambda x: '您喜欢在' + str(x) + '时间进行消费')
df_profile['入会程度'] = df['L'].apply(lambda x: '老用户' if int(x) >= 13 else '中等用户' if int(x) >= 4 else '新用户')
df_profile['最近购买的时间'] = df['R'].apply(lambda x: '您最近' + str(int(x) * 30) + '天前进行过一次购物')
df_profile['消费频次'] = df['F'].apply(lambda x: '高频消费' if x >= 20 else '中频消费' if x >= 6 else '低频消费')
df_profile['消费金额'] = df['M'].apply(lambda x: '高等消费用户' if int(x) >= 1e+05 else '中等消费用户' if int(x) >= 1e+04 else '低等消费用户')
df_profile['消费积分'] = df['P'].apply(lambda x: '高等积分用户' if int(x) >= 1e+05 else '中等积分用户' if int(x) >= 1e+04 else '低等积分用户')
df_profile

在这里插入图片描述

3.6.2 会员用户词云分析

# 开始绘制用户词云,封装成一个函数来直接显示词云
def wc_plot(df, id_label = None):"""df: 为DataFrame的数据集id_label: 为输入用户的会员卡号,默认为随机取一个会员进行展示"""myfont = 'C:/Windows/Fonts/simkai.ttf'if id_label == None:id_label = df.loc[np.random.choice(range(df.shape[0])), '会员卡号']text = df[df['会员卡号'] == id_label].T.iloc[:, 0].values.tolist()plt.figure(dpi = 100)wc = WordCloud(font_path = myfont, background_color = 'white', width = 500, height = 400).generate_from_text(' '.join(text))plt.imshow(wc)plt.axis('off')plt.savefig(f'./会员卡号为{id_label}的用户画像.png')plt.show()

在这里插入图片描述
在这里插入图片描述

4 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/150002.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

工信部教考中心:什么是《研发效能(DevOps)工程师》认证,拿到证书之后有什么作用!(下篇)丨IDCF

拿到证书有什么用? 提高职业竞争力:通过学习认证培训课程可以提升专业技能,了解项目或产品研发全生命周期的核心原则,掌握端到端的研发效能提升方法与实践,包括组织与协作、产品设计与运营、开发与交付、测试与安全、…

信创办公–基于WPS的EXCEL最佳实践系列 (条件格式)

信创办公–基于WPS的EXCEL最佳实践系列 (设置条件格式) 目录 应用背景操作步骤1、选用条件格式1.1 筛选出迟到次数超过3次的数据1.2 筛选出早退次数位于前三的数据1.3 个人加班时长在总体中所占的在的位置 2、删除条件格式2.1 清除规则2.2 管理规则 应用…

铭控传感亮相2023国际物联网展,聚焦“多场景物联感知方案”应用

金秋九月,聚焦IoT基石技术,荟萃最全物联感知企业,齐聚IOTE 2023第20届国际物联网展深圳站。铭控传感携智慧楼宇,数字工厂,智慧消防,智慧泵房等多场景物联感知方案及多品类无线传感器闪亮登场,现…

Docker 基础

一、快速入门: 1.Docker的安装 安装docker引擎 官方网址:Install Docker Engine on CentOS | Docker Docs 朋友们,有坑,千万不要用官方的仓库,就是下面这一步 记得用国内的镜像源: yum-config-manager …

C# 替换字符串最后一个逗号为分号

使用场景,sql语句的insert into table(c1,c2,c3) values (v1,v2,v3),(v1,v2,v3),(v1,v2,v3), 为了提高执行效率,在一个insert into中执行时,在循环中拼接语句,最后一个逗号需要替换为分号才能执行。 public static string Replace…

干洗店软件,洗鞋店收银管理系统小程序app

闪站侠洗衣洗鞋店管理系统是一款专业的洗护管理软件,它集收银系统,会员卡管理系统,财务报表系统等强大功能为一身,系统界面简洁优美,操作直观简单。系统为广大干洗店,洗衣店提供了成本分析,利润分析&#x…

浅谈智能安全配电装置在老年人建筑中的应用

摘要:我国每年因触电伤亡人数非常多,大多数事故是发生在用电设备和配电装置。在电气事故中,无法预料和不可抗拒的事故是比较少的,大量用电事故可采取切实可行措施来预防。本文通过结合老年人建筑的特点和智能安全配电装置的功能&a…

【方法】如何取消ZIP压缩包的密码?

我们知道,在压缩ZIP文件的时候,可以设置“打开密码”来保护压缩包,那后续不需要保护了,不想每次打开压缩包都输一次密码,要如何取消密码呢? 比较常用的方法是先把ZIP压缩包解压后,再压缩成没有…

微服务技术栈-Ribbon负载均衡和Nacos注册中心

文章目录 前言一、Ribbon负载均衡1.LoadBalancerInterceptor(负载均衡拦截器)2.负载均衡策略IRule 二、Nacos注册中心1.Nacos简介2.搭建Nacos注册中心3.服务分级存储模型4.环境隔离5.Nacos与Eureka的区别 总结 前言 在上面那个文章中介绍了微服务架构的…

除静电离子风嘴的工作原理及应用

除静电离子风嘴是一种常见的除静电设备,它的工作原理是通过产生大量的负离子来中和物体表面的静电电荷,从而达到除静电的目的。 除静电离子风嘴内部装有一个电离器,电离器会将空气中的氧气分子或水分子电离成正、负离子。这些带电的离子在空…

2023年地理信息系统与遥感专业就业前景与升学高校排名选择

活动地址:毕业季进击的技术er 地理信息系统(GIS,Geographic Information System),又称“地理信息科学”(Geographic Information Science),是一种具有信息系统空间专业形式的数据管理…

Vulnhub_driftingblues1靶机渗透测试

driftingblues1靶机 信息收集 使用nmap扫描得到目标靶机ip为192.168.78.166,开放80和22端口 web渗透 访问目标网站,在查看网站源代码的时候发现了一条注释的base64加密字符串 对其解密得到了一个目录文件 访问文件发现是一串ook加密的字符串&#xf…

【面试】C/C++面试八股

C/C面试八股 编译过程的四个阶段C和C语言的区别简单介绍一下三大特性多态的实现原理虚函数的构成原理虚函数的调用原理虚表指针在什么地方进行初始化的?构造函数为什么不能是虚函数为什么建议将析构函数设为虚函数虚函数和纯虚函数的区别抽象类类对象的对象模型内存…

用 Pytest+Allure 生成漂亮的 HTML 图形化测试报告

本篇文章将介绍如何使用开源的测试报告生成框架 Allure 生成规范、格式统一、美观的测试报告。 通过这篇文章的介绍,你将能够: 将 Allure 与 Pytest 测试框架相结合; 如何定制化测试报告内容 执行测试之后,生成 Allure 格式的测…

AutoGen - 多个Agent开发LLM应用的框架

文章目录 关于安装使用关于 Enable Next-Gen Large Language Model Applications 用多个Agent开发LLM应用的框架,这些agent可相互交流以解决任务。 官网:https://microsoft.github.io/autogen/github : http://github.com/microsoft/autogendiscord : https://discord.com/i…

面试官必问的分布式锁面试题,你答得上来吗?

一、面试聊聊-分布式锁,如何回答? 要分析分布式锁这个问题,我们根据黄金圈法则来分析 黄金圈法则是由美国营销顾问西蒙斯涅克(Simon Sinek)提出的一种思维模型,用于帮助人们更好地理解和传达信息。黄金圈法…

自定义类型:结构体,枚举,联合

目录 前言 一、结构体 1.构体的声明 1.1 结构的基础知识 1.2 结构的声明 1.3 特殊的声明 1.4 结构的自引用 1.5 结构体变量的定义和初始化 1.6 结构体内存对齐 1.7 修改默认对齐数 2. 位段 2.1 什么是位段 2.2 位段的内存分配 2.3 位段的跨平台问题 2.4 位段的应…

网络基础知识面试题1

VC++常用功能开发汇总(专栏文章列表,欢迎订阅,持续更新...)https://blog.csdn.net/chenlycly/article/details/124272585C++软件异常排查从入门到精通系列教程(专栏文章列表,欢迎订阅,持续更新...)

Spring-事务管理-加强

目录 开启事务 编程式事务 声明式事务 声明式事务的优点 声明式事务的粒度问题 声明式事务用不对容易失效 Spring事务失效可能是哪些原因 Transactional(rollbackFor Exception.class)注解 Spring 事务的实现原理 事务传播机制 介绍 用法 rollbackFor 场景举例 …

深入探究C++编程中的资源泄漏问题

目录 1、GDI对象泄漏 1.1、何为GDI资源泄漏? 1.2、使用GDIView工具排查GDI对象泄漏 1.3、有时可能需要结合其他方法去排查 1.4、如何保证没有GDI对象泄漏? 2、进程句柄泄漏 2.1、何为进程句柄泄漏? 2.2、创建线程时的线程句柄泄漏 …