基于风驱动优化的BP神经网络(分类应用) - 附代码

基于风驱动优化的BP神经网络(分类应用) - 附代码

文章目录

  • 基于风驱动优化的BP神经网络(分类应用) - 附代码
    • 1.鸢尾花iris数据介绍
    • 2.数据集整理
    • 3.风驱动优化BP神经网络
      • 3.1 BP神经网络参数设置
      • 3.2 风驱动算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用风驱动算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1特征2特征3类别
单组iris数据5.32.11.21

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组)测试集(组)总数据(组)
10545150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.风驱动优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络结构

图1.神经网络结构

神经网络参数如下:

%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 风驱动算法应用

风驱动算法原理请参考:https://blog.csdn.net/u011835903/article/details/108676626

风驱动算法的参数设置为:

popsize = 10;%种群数量Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从风驱动算法的收敛曲线可以看到,整体误差是不断下降的,说明风驱动算法起到了优化的作用:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/150304.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Zookeeper经典应用场景实战(一)

文章目录 1、Zookeeper Java客户端实战1.1、 Zookeeper 原生Java客户端使用1.2、 Curator开源客户端使用 2、 Zookeeper在分布式命名服务中的实战2.1、 分布式API目录2.2、 分布式节点的命名2.3、 分布式的ID生成器 3、Zookeeper实现分布式队列3.1、 设计思路3.2、 使用Apache …

Springboot学生成绩管理系统idea开发mysql数据库web结构java编程计算机网页源码maven项目

一、源码特点 springboot 学生成绩管理系统是一套完善的信息系统,结合springboot框架和bootstrap完成本系统,对理解JSP java编程开发语言有帮助系统采用springboot框架(MVC模式开发),系统 具有完整的源代码和数据库&…

Android:实现手机前后摄像头预览同开

效果展示 一.概述 本博文讲解如何实现手机前后两颗摄像头同时预览并显示 我之前博文《OpenGLES:GLSurfaceView实现Android Camera预览》对单颗摄像头预览做过详细讲解,而前后双摄实现原理其实也并不复杂,粗糙点说就是把单摄像头预览流程写两…

TikTok环保运动:短视频平台上的可持续发展

在当今社交媒体的繁荣时代,TikTok已经成为全球范围内年轻一代最喜爱的短视频分享平台之一。 数以亿计的用户在这里分享他们的创造力、生活片段和喜好。然而,随着全球环保意识的不断增强,TikTok也成为了一个独特的环境,倡导可持续…

Node-RED系列教程-25node-red获取天气

安装节点:node-red-contrib-weather 节点图标如下: 使用说明:node-red-contrib-weather (node) - Node-RED 流程图中填写经度和纬度即可。 演示: json内容: {

【重磅】这就是元宇宙碰撞的后果

筹备了一年多——朋友们,它终于来了! 我们刚刚宣布官方 Aavegotchi x Sandbox 在 X 上共享元宇宙体验。 10 月 25 日在 The Sandbox 上线,有两份可领取的空投。 Gotchi 游戏即将爆发。你们兴奋吗?

氟化钡镜片

氟化钡晶体具有良好的光学透过性能,在0.15μm-14.5μm的光谱范围内,可以用作紫外和红外光学窗口。同时,又具有优良的闪烁性能,成为高能物理与核物理、核医学等领域中重要的晶体材料。 特此记录 anlog 2023年10月7日

Linux 逻辑卷

目录 一、认识 1、概念 2、术语: 1)物理存储设备 2)物理卷 3)卷组 4)PE物理区域 5)逻辑卷 6)LE逻辑区域 7)VGDA卷组描述符区域 二、部署逻辑卷 1、物理卷管理 2、卷组…

防御安全第五次作业

1. 什么是数据认证,有什么作用,有哪些实现的技术手段? 数据认证是指保证数据的真实性、完整性和可信度,以确保数据不被篡改或伪造。其作用包括但不限于: 保护关键数据不被恶意篡改或损坏 提供数据来源的可靠性和安全性…

E: Unable to locate package XXX

问题描述: 当使用 apt-get install XXX 安装包时,出现错误 E: Unable to locate package XXX 解决方法: apt-get update apt-get install XXX

为什么append到父节点后的子节点发生修改,父节点打印出来的也会变化

今天走查前端代码&#xff0c;发现历史代码写出来的不规范&#xff0c;但是他还是在生产运行了很久的代码&#xff0c;仔细思量后发现&#xff0c;其实原理是对的&#xff0c;只是看起来不美观&#xff0c;不易读而已。 废话不说&#xff0c;先上demo代码 <!DOCTYPE html&g…

【Spring Boot】创建一个 Spring Boot 项目

创建一个 Spring Boot 项目 1. 安装插件2. 创建 Spring Boot 项目3. 项目目录介绍和运行注意事项 1. 安装插件 IDEA 中安装 Spring Boot Helper / Spring Assistant / Spring Initializr and Assistant插件才能创建 Spring Boot 项⽬ &#xff08;有时候不用安装&#xff0c;直…

维修派单系统好用吗?如何实现数字化后勤管理?

在当今社会&#xff0c;各种设备和设施的正常运转对于单位和组织来说至关重要。然而&#xff0c;由于各种因素的影响&#xff0c;设备和设施在日常运行过程中难免会出现故障。这时&#xff0c;高效的维修服务就显得尤为重要。而“的修”维修派单系统&#xff0c;就是一种专为维…

2023八股每日一题(九月份)

文章目录 9月13日【JDK、JRE、JVM之间的区别】9月14日【什么是面向对象&#xff1f;】9月15日【和equals比较】9月16日【final 关键字的作用】9月17日【String、StringBuffer、StringBuilder】9月18日【重载和重写的区别】9月19日【接口和抽象类的区别】9月20日【List和Set的区…

力扣第572题 另一棵树的子树 c++深度(DFS)注释版

题目 572. 另一棵树的子树 简单 给你两棵二叉树 root 和 subRoot 。检验 root 中是否包含和 subRoot 具有相同结构和节点值的子树。如果存在&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 二叉树 tree 的一棵子树包括 tree 的某个节点和这个节点的所有…

数据挖掘(3)特征化

从数据分析角度&#xff0c;DM分为两类&#xff0c;描述式数据挖掘&#xff0c;预测式数据挖掘。描述式数据挖掘是以简介概要的方式描述数据&#xff0c;并提供数据的一般性质。预测式数据挖掘分析数据建立模型并试图预测新数据集的行为。 DM的分类&#xff1a; 描述式DM&#…

为什么企业都在申报“高新技术”?有以下十大好处!

随着信息技术时代的迅速发展&#xff0c;很多企业为了能够在同行中脱颖而出&#xff0c;都会选择办理一些和企业相关的资质证书&#xff0c;以便提升企业的核心竞争力&#xff0c;今天同邦信息科技的小编就告诉大家为什么那么多企业都选择申报“高新技术”企业&#xff1f; 首先…

Cocos Creator3.8 项目实战(四)巧用九宫格图像拉伸

一、为什么要使用九宫格图像拉伸 相信做过前端的同学都知道&#xff0c;ui &#xff08;图片&#xff09;资源对包体大小和内存都有非常直接的影响。 通常ui 资源都是图片&#xff0c;也是最占资源量的资源类型&#xff0c;游戏中的ui 资源还是人机交互的最重要的部分&#xff…

若依分离版-前端使用

1 执行 npm install --registryhttps://registry.npm.taobao.org&#xff0c;报错信息如下 npm ERR! code ERESOLVE npm ERR! ERESOLVE unable to resolve dependency tree npm ERR! npm ERR! While resolving: ktg-mes-ui3.8.2 npm ERR! Found: vue2.6.12 npm ERR! node_modu…

张量-规约计算

作为Tensorflow中常见的一种计算方式,规约计算在操作时会有降维的功能。在所有规约计算系列的操作函数中,都是以reduce开头来命名,以函数名所命名的手段来降维。 每个函数都有axis参数,即沿哪个方向使用函数名所命名的方法对输入的tensor进行降维。axis的默认值是None,即把inp…