【yolo系列:yolov7改进wise-iou】

yolo系列文章目录

学习视频:
YOLOV7改进-Wise IoU_哔哩哔哩_bilibili

代码地址:
objectdetection_script/yolov7-iou.py at master · z1069614715/objectdetection_script (github.com)

文章目录

  • yolo系列文章目录
  • 一、在yolov7之上进行替换
  • 二、在loss.py的ComputeLoss,ComputeLossOTA修改如下
  • 三、设置版本
  • 总结



一、在yolov7之上进行替换

utils/general.py替换bbiox

class WIoU_Scale:''' monotonous: {None: origin v1True: monotonic FM v2False: non-monotonic FM v3}momentum: The momentum of running mean'''iou_mean = 1.monotonous = False_momentum = 1 - 0.5 ** (1 / 7000)_is_train = Truedef __init__(self, iou):self.iou = iouself._update(self)@classmethoddef _update(cls, self):if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \cls._momentum * self.iou.detach().mean().item()@classmethoddef _scaled_loss(cls, self, gamma=1.9, delta=3):if isinstance(self.monotonous, bool):if self.monotonous:return (self.iou.detach() / self.iou_mean).sqrt()else:beta = self.iou.detach() / self.iou_meanalpha = delta * torch.pow(gamma, beta - delta)return beta / alphareturn 1def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, SIoU=False, EIoU=False, WIoU=False, Focal=False, alpha=1, gamma=0.5, scale=False, eps=1e-7):# Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)# Get the coordinates of bounding boxesif xywh:  # transform from xywh to xyxy(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_else:  # x1, y1, x2, y2 = box1b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps)w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps)# Intersection areainter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \(b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0)# Union Areaunion = w1 * h1 + w2 * h2 - inter + epsif scale:self = WIoU_Scale(1 - (inter / union))# IoU# iou = inter / union # ori iouiou = torch.pow(inter/(union + eps), alpha) # alpha iouif CIoU or DIoU or GIoU or EIoU or SIoU or WIoU:cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) widthch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex heightif CIoU or DIoU or EIoU or SIoU or WIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal squaredrho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha  # center dist ** 2if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)with torch.no_grad():alpha_ciou = v / (v - iou + (1 + eps))if Focal:return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)), torch.pow(inter/(union + eps), gamma)  # Focal_CIoUelse:return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))  # CIoUelif EIoU:rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2cw2 = torch.pow(cw ** 2 + eps, alpha)ch2 = torch.pow(ch ** 2 + eps, alpha)if Focal:return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2), torch.pow(inter/(union + eps), gamma) # Focal_EIouelse:return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2) # EIouelif SIoU:# SIoU Loss https://arxiv.org/pdf/2205.12740.pdfs_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + epss_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + epssigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)sin_alpha_1 = torch.abs(s_cw) / sigmasin_alpha_2 = torch.abs(s_ch) / sigmathreshold = pow(2, 0.5) / 2sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1)angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - math.pi / 2)rho_x = (s_cw / cw) ** 2rho_y = (s_ch / ch) ** 2gamma = angle_cost - 2distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y)omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2)omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2)shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)if Focal:return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha), torch.pow(inter/(union + eps), gamma) # Focal_SIouelse:return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha) # SIouelif WIoU:if Focal:raise Exception("WIoU do not support Focal.")elif scale:return getattr(WIoU_Scale, '_scaled_loss')(self), (1 - iou) * torch.exp((rho2 / c2)), iou # WIoU https://arxiv.org/abs/2301.10051else:return iou, torch.exp((rho2 / c2)) # WIoU v1if Focal:return iou - rho2 / c2, torch.pow(inter/(union + eps), gamma)  # Focal_DIoUelse:return iou - rho2 / c2  # DIoUc_area = cw * ch + eps  # convex areaif Focal:return iou - torch.pow((c_area - union) / c_area + eps, alpha), torch.pow(inter/(union + eps), gamma)  # Focal_GIoU https://arxiv.org/pdf/1902.09630.pdfelse:return iou - torch.pow((c_area - union) / c_area + eps, alpha)  # GIoU https://arxiv.org/pdf/1902.09630.pdfif Focal:return iou, torch.pow(inter/(union + eps), gamma)  # Focal_IoUelse:return iou  # IoU

二、在loss.py的ComputeLoss,ComputeLossOTA修改如下

在这里插入图片描述

if type(iou) is tuple:if len(iou) == 2:lbox += (iou[1].detach() * (1 - iou[0].)).mean()iou = iou[0]else:lbox += (iou[0] * iou[1]).mean()iou = iou[-1]
else:lbox += (1.0 - iou.squeeze()).mean()  # iou loss

修改在这里插入图片描述

在这里插入图片描述

三、设置版本

monotonous = False
就是v3,truev2,none为v1版本,可以自行尝试效果。


总结

确定好训练配置后,即可进行性能对比分析,找出哪个版本在实验中取得了明显的提升。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/150343.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大语言模型之十六-基于LongLoRA的长文本上下文微调Llama-2

增加LLM上下文长度可以提升大语言模型在一些任务上的表现,这包括多轮长对话、长文本摘要、视觉-语言Transformer模型的高分辨4k模型的理解力以及代码生成、图像以及音频生成等。 对长上下文场景,在解码阶段,缓存先前token的Key和Value&#…

新文件覆盖旧文件还能复原吗,3个方法快速恢复覆盖文件!

iPhone在解压压缩文件时,不小心将同名文件进行了覆盖,怎么撤回? 在使用U盘转移文档时,意外将同名文档进行了替换,怎么恢复? 当误将重名文件进行了替换,如何找回这些被覆盖的旧文件?…

oracle linux8.8上安装oracle 19c集群

1、操作系统版本告警 处理办法:export CV_ASSUME_DISTIDRHEL7.6 2、ssh互信故障 查看ssh版本 [rootdb1 ~]# ssh -V OpenSSH_8.0p1, OpenSSL 1.1.1k FIPS 25 Mar 2021 处理办法-2个节点都需要操作 安装前配置 # mv /usr/bin/scp /usr/bin/scp.orig # echo "…

解决 Jenkins 性能缓慢的问题~转

解决 Jenkins 性能缓慢的问题 Docker中文社区 ​​ 计算机技术与软件专业技术资格持证人 2 人赞同了该文章 没有什么比缓慢的持续集成系统更令人沮丧的了。它减慢了反馈循环并阻止代码快速投入生产。虽然像使用性能更好的服务器可以为您争取时间,但您最终必须投资…

c++day1

#include <iostream> //#预处理 using namespace std; //using :使用命名空间的关键字 //namespace:命名空间的关键字 //std:标准的命名空间//程序入口 int main() {//程序的开始int daxie 0,xiaoxie 0,sum 0, kong 0,other 0;string str;getline(cin , str);for(in…

基于SSM的资源共享平台设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;采用JSP技术开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#x…

Zabbix监控系统 第一部分:zabbix服务部署+自定义监控项+自动发现与自动注册(附详细部署实例)

这里是目录 一、Zabbix概述1.1 简介1.2 zabbix组件1.2.1 zabbix server1.2.2 zabbix agent1.2.3 zabbix proxy1.2.4 zabbix get1.2.5 zabbix sender 1.3 工作原理1.4 端口号1.5 zabbix中预设的键值1.6 自定义监控项1.7 邮件报警的思路1.8 Zabbix自动发现和自动注册1.8.1 zabbix…

[图论]哈尔滨工业大学(哈工大 HIT)学习笔记16-22

视频来源&#xff1a;2.7.1 补图_哔哩哔哩_bilibili 目录 1. 补图 1.1. 补图 2. 双图 2.1. 双图定理 3. 图兰定理/托兰定理 4. 极图理论 5. 欧拉图 5.1. 欧拉迹 5.2. 欧拉闭迹 5.3. 欧拉图 5.4. 欧拉定理 5.5. 伪图 1. 补图 1.1. 补图 &#xff08;1&#xff09;…

使用mysql的cmd窗口,运行项目中的mapper层xml里的sql语句,查看运行结果

使用mysql的cmd窗口&#xff0c;运行项目中的mapper层xml里的sql语句&#xff0c;查看运行结果 项目代码或者从控制台复制sql语句从控制台搜索方式 运行效果或者使用idea的console窗口运行查看结果点击进入&#xff0c;查看表结构与字段 其他技巧根据from 表名寻找对应的sql代码…

微服务学习(十):安装Maven

微服务学习&#xff08;十&#xff09;&#xff1a;安装Maven 1、下载Maven 官网下载 2、将下载后的资源包上传到服务器 3、解压资源包并安装 tar -zxvf apache-maven-3.9.5-bin.tar.gz4、配置环境变量 vi /etc/profileexport MAVEN_HOME/home/maven/apache-maven-3.9.5 …

SSL证书是什么?1分钟get

在当今互联网世界中&#xff0c;保护数据的完整性和隐私性至关重要&#xff0c;由此&#xff0c;在网络数据安全保护领域&#xff0c;作为保护网络传输数据安全的SSL证书越来越频繁出现。那么你知道SSL证书是什么&#xff1f;SSL证书有哪些类型&#xff1f;SSL证书有什么用吗&a…

机器学习---RBM、KL散度、DBN

1. RBM 1.1 BM BM是由Hinton和Sejnowski提出的一种随机递归神经网络&#xff0c;可以看做是一种随机生成的 Hopfield网络&#xff0c;是能够通过学习数据的固有内在表示解决困难学习问题的最早的人工神经网络之 一&#xff0c;因样本分布遵循玻尔兹曼分布而命名为BM。BM由二…

基于Springboot实现旧物置换网站平台演示【项目源码+论文说明】分享

基于Springboot实现旧物置换网站平台演示 摘要 随着时代在一步一步在进步&#xff0c;旧物也成人们的烦恼&#xff0c;许多平台网站都在推广自已的产品像天猫、咸鱼、京东。所以开发出一套关于旧物置换网站成为必需。旧物置换网站主要是借助计算机&#xff0c;通过对用户进行管…

JVM上篇之虚拟机与java虚拟机介绍

目录 虚拟机 java虚拟机 简介 特点 作用 位置 整体结构 类装载子系统 运行时数据区 java执行引擎 Java代码执行流程 jvm架构模型 基于栈式架构 基于寄存器架构 总结 jvm的生命周期 1.启动 2.执行 3.退出 JVM的发展历程 虚拟机 所谓虚拟机&#xff0c;指的…

竞赛选题 深度学习 python opencv 动物识别与检测

文章目录 0 前言1 深度学习实现动物识别与检测2 卷积神经网络2.1卷积层2.2 池化层2.3 激活函数2.4 全连接层2.5 使用tensorflow中keras模块实现卷积神经网络 3 YOLOV53.1 网络架构图3.2 输入端3.3 基准网络3.4 Neck网络3.5 Head输出层 4 数据集准备4.1 数据标注简介4.2 数据保存…

外卖小程序源码vs定制开发:何时选择哪种方式?

在数字餐饮行业的蓬勃发展中&#xff0c;外卖应用程序已经成为餐厅和创业者的必备工具。然而&#xff0c;当涉及到开发外卖应用程序时&#xff0c;您会面临一个重要的决策&#xff1a;是使用外卖小程序源码还是进行定制开发&#xff1f;这两种方法各有优势和劣势&#xff0c;取…

vue3+elementPlus el-input的type=“number“时去除右边的上下箭头

改成 代码如下 <script lang"ts" setup> import {ref} from vue const inputBtn ref() </script> <template><el-input type"number" v-model"inputBtn" style"width: 80px;" class"no_number">…

cartographer-(0)-ubuntu(20.04)-环境安装

1.安装 ROS wiki.ros.org 1.1修改镜像源&#xff1a; 到网站上找与操作系统相匹配的镜像源 ubuntu | 镜像站使用帮助 | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror # 默认注释了源码镜像以提高 apt update 速度&#xff0c;如有需要可自行取消注释 deb htt…

Echarts 实现X轴多维效果

效果图 代码参考地址 https://download.csdn.net/download/Frazier1995/88403104

Android Studio 是如何和我们的手机共享剪贴板的

背景 近期完成了target33的项目适配升级,随着AGP和gradle的版本升级,万年老版本Android Studio(后文简称AS)也顺便升级到了最新版Android Studio Giraffe | 2022.3.1,除了新UI外,最让我好奇的是这次的Running Devices功能(官方也称为Device mirroring)可以控制真机了. 按照操…