Pytorch目标分类深度学习自定义数据集训练

目录

一,Pytorch简介;

二,环境配置;

三,自定义数据集;

四,模型训练;

五,模型验证;


一,Pytorch简介;

        PyTorch是一个开源的Python机器学习库,基于Torch,用于自然语言处理等应用程序。PyTorch 基于 Python: PyTorch 以 Python 为中心或“pythonic”,旨在深度集成 Python 代码,而不是作为其他语言编写的库的接口。Python 是数据科学家使用的最流行的语言之一,也是用于构建机器学习模型和 ML 研究的最流行的语言之一。由于其语法类似于 Python 等传统编程语言,PyTorch 比其他深度学习框架更容易学习。

二,环境配置;

       版本:

        系统:window10;

        Python:3.11.5;

        pytorch:2.0.1;

       Python安装:

        Python官网:python.org;

        下载3.11.5版本Python安装版进行安装;

        配置Python环境变量;

        在系统变量path中添加Python的bin路径和Script路径;

        查看Python是否安装成功;

        

        正常如上显示表示安装成功。

        同时查看Python对应的Pip版本;

        Pytorch安装:

        pytorch官网:PyTorch;

        

        进入Pytorch官网后点击左上角Get Started查看Pytorch对于的Python版本,GPU版本。默认安装的是CPU版本,本文使用Pip安装Pytorch方式,直接运行Run this Command会报错,安装了几次都不行,所以自己找对应的安装文件进行安装更方便。

        根据Pytorch官网介绍的对应版本找到我们需要的依赖文件。

        网址:download.pytorch.org/whl/torch_stable.html

        

        找到对应安装的版本,cu开头表示是GPU版本和版本号,torch后面对应的是Pytorch版本号,cp对应Python版本;点击下载安装文件;

        下载好以后打开文件所在位置,进入window命令界面,执行命令;

pip install torch-2.0.1+cu117-cp311-cp311-win_amd64.whl

        英伟达GPU安装:

        选择对应的GPU版本安装,安装完成后验证下是否安装成功,正常显示版本表示安装成功。

三,自定义数据集;

        从网上下载数据集,按照文件夹分类,首先将数据集制作成包含图片路径,和对应索引的csv文件。

import torch
import os, glob
import random, csv# 所有自定义数据集的一个母类
from torch.utils.data import Dataset, DataLoader
# 常用的图片变换器
from torchvision import transforms
# 从图片读取出数据
from PIL import Image# 自定义数据集的类,继承自Dataset
class Pokemon(Dataset):# 一、初始化函数init# 第一个参数root:总的图片所在的位置,可以是任意的位置,我们的图片可以放在任意的位置,我们这里就存储在当前目录文件夹下。# 第二个参数resize:图片输出的size,是由这个参数所进行设定。# 第三个参数mode:这里我们需要做train、validation以及test,对应这三种数据结构,因此我们用一个list[0,1,2]来代表是哪个模式。def __init__(self, root, resize, mode):# 先调用母类的初始化函数:super(Pokemon, self).__init__()# 1、首先我们将这个参数保存下来self.root = rootself.resize = resize# 2、给每一个分类做一个映射,即当前的皮卡丘、妙蛙种子等这个string类型所对应的label是多少,这个是需要我们人为进行编码的。self.name2label = {}  # 用字典来表示映射关系# 通过循环方式,将root路径下的文件夹名进行编码for name in sorted(os.listdir(os.path.join(root))):# 过滤掉非文件夹:如果不是dir,就过滤掉,此外我们还通过sorted排序的方法,将键值对关系固定下来if not os.path.isdir(os.path.join(root, name)):continue# 文件名做key,当前name2label的长度做valueself.name2label[name] = len(self.name2label.keys())print(self.name2label)# image, labelself.load_csv('images.csv')# 二、创建一个csv,用于保存图片全路径和对应的标签label# 这个函数接受一个参数filename# 这个函数中需要将所有图片都load进来def load_csv(self, filename):images = []for name in self.name2label.keys():# 类别信息我们可以使用路径来判断# 上面路径的mewtwo就是类别images += glob.glob(os.path.join(self.root, name, '*.png'))images += glob.glob(os.path.join(self.root, name, '*.jpg'))images += glob.glob(os.path.join(self.root, name, '*.jpeg'))print(len(images), images)# 将images顺序打乱random.shuffle(images)# 打开这个文件with open(os.path.join(self.root, filename), mode='w', newline='') as f:# 新建writer,获得csv这个文件对象writer = csv.writer(f)for img in images:  # 获得每行信息# 通过分割符,将每行信息的内容分割开,取导数第二个,类型name = img.split(os.sep)[-2]# 通过获取的类型名来获取labellabel = self.name2label[name]# 将这个label信息写到csv中# csv是以逗号作为分割的writer.writerow([img, label])print('writen into csv file:', filename)# 三、完成两个自定义的逻辑# 1、样本的总体数量(图片总体数量),返回的是一个数字,总体图片大概有1168张,60%用于training,因此返回6-7百张图片def __len__(self):pass# 2、用于返回当前index上面元素的值,这里是返回两个数据:# 需要返回当前image的data,以及image所对应的label[0,1,2,3,4]def __getitem__(self, idx):pass# 创建一个调试函数:
def main():db = Pokemon('F:\\train', 224, 'train')if __name__ == '__main__':main()

        将图片路径改成自己数据的文件夹路径,运行代码在对应路径下生成.csv格式文件

        类别索引根据文件夹种类顺序生成,要和csv文件中索引对应。数据集制作完成后就可以开始训练了。

        首先定义加载数据集类;

import torch
import os, glob
import random, csv# 所有自定义数据集的一个母类
from torch.utils.data import Dataset, DataLoader# 常用的图片变换器
from torchvision import transforms
# 从图片读取出数据
from PIL import Image# 自定义数据集的类,继承自Dataset
class Pokemon(Dataset):# 一、初始化函数init# 第一个参数root:总的图片所在的位置,可以是任意的位置,我们的图片可以放在任意的位置,我们这里就存储在当前目录文件夹下。# 第二个参数resize:图片输出的size,是由这个参数所进行设定。# 第三个参数mode:这里我们需要做train、validation以及test,对应这三种数据结构,因此我们用一个list[0,1,2]来代表是哪个模式。def __init__(self, root, resize, mode):# 先调用母类的初始化函数:super(Pokemon, self).__init__()# 1、首先我们将这个参数保存下来self.root = rootself.resize = resize# 2、给每一个分类做一个映射,这个string类型所对应的label是多少,这个是需要我们人为进行编码的。self.name2label = {}  # 用字典来表示映射关系# 通过循环方式,将root路径下的文件夹名进行编码for name in sorted(os.listdir(os.path.join(root))):# 过滤掉非文件夹:如果不是dir,就过滤掉,此外我们还通过sorted排序的方法,将键值对关系固定下来if not os.path.isdir(os.path.join(root, name)):continue# 文件名做key,当前name2label的长度做valueself.name2label[name] = len(self.name2label.keys())# print(self.name2label)# 将self.load_csv的返回值images, labels赋予self.images, self.labelsself.images, self.labels = self.load_csv('images.csv')# 四、不同比例模式下对图片数量进行划分if mode == 'train':  # 取60%做training# len(self.images)的长度是1167,取60%做为train模式的图片self.images = self.images[:int(0.6 * len(self.images))]self.labels = self.labels[:int(0.6 * len(self.labels))]elif mode == 'val':  # 取20%做validation, 60%-80%self.images = self.images[int(0.6 * len(self.images)):int(0.8 * len(self.images))]self.labels = self.labels[int(0.6 * len(self.labels)):int(0.8 * len(self.labels))]else:  # mode为test,取80%到最末尾self.images = self.images[int(0.8 * len(self.images)):]self.labels = self.labels[int(0.8 * len(self.labels)):]# 二、创建一个csv,用于保存图片全路径和对应的标签label# 这个函数接受一个参数filename# 这个函数中需要将所有图片都load进来def load_csv(self, filename):# 需要一个判断,如果文件不存在,就需要创建csv,直接读取创建好的csv文件内容即可:# 如果不存在,就需要创建csvif not os.path.exists(os.path.join(self.root, filename)):images = []for name in self.name2label.keys():# 类别信息我们可以使用路径来判断# 上面路径的mewtwo就是类别images += glob.glob(os.path.join(self.root, name, '*.png'))images += glob.glob(os.path.join(self.root, name, '*.jpg'))images += glob.glob(os.path.join(self.root, name, '*.jpeg'))print(len(images), images)# 将images顺序打乱random.shuffle(images)# 打开这个文件with open(os.path.join(self.root, filename), mode='w', newline='') as f:# 新建writer,写入csv这个文件对象writer = csv.writer(f)for img in images:# 通过分割符,将每行信息的内容分割开,取导数第二个,类型name = img.split(os.sep)[-2]# 通过获取的类型名来获取labellabel = self.name2label[name]# 将这个label信息写到csv中# csv是以逗号作为分割的writer.writerow([img, label])print('writen into csv file:', filename)# 三、读取csv文件过程:# 这里需要在开头有一个判断,如果csv存在,就不用写入csv了,直接进行读取# 下次运行的时候只需加载进来即可images, labels = [], []with open(os.path.join(self.root, filename)) as f:# 新建reader,读取csv这个文件对象reader = csv.reader(f)for row in reader:img, label = rowlabel = int(label)  # 将这个label转码为int类型# 将img每个图片路径,以及label保存在建立好的列表对象中。images.append(img)labels.append(label)assert len(images) == len(labels)return images, labels# 完成两个自定义的逻辑:# 1、样本的总体数量(图片总体数量),返回的是一个数字,总体图片大概有1168张,60%用于training,因此返回6-7百张图片# 五、完成总体样本数量函数的内容def __len__(self):# 这里的样本长度是跟模型类别来决定的,上面已经根据不同模型类型划分了样本数量了。# 不同模式下,样本长度是不同的。# 因此这里的总体样本长度,就是不同模式下的样本数量。return len(self.images)# 九、解决normalize处理后,visdom无法正常显示的问题# 这里传入的参数x是normalize过后的def denormalize(self, x_hat):mean = [0.485, 0.456, 0.406]std = [0.229, 0.224, 0.225]mean = torch.tensor(mean).unsqueeze(1).unsqueeze(1)std = torch.tensor(std).unsqueeze(1).unsqueeze(1)print('mean.shape,std.shape:', mean.shape, std.shape)x = x_hat * std + meanreturn x# 2、用于返回当前index上面元素的值,这里是返回两个数据:# 需要返回当前image的data,以及image所对应的label[0,1,2,3,4]# 六、完成index与样本的一一对应def __getitem__(self, idx):# idx数值范围是[0-len(images)]# self.images保存了所有的数据;self.labels保存了所有数据对应的label信息;# img是一个string类型(还不是具体的图片,只是路径)# label是一个整数类型img, label = self.images[idx], self.labels[idx]# 这里就需要将img所对应的路径读取出图片,并转为tensor类型# 这里我们可以Compose组合操作步骤# 八、增加数据预处理的工作,在Compose中增加这些内容,data augmentation数据增强# 这里我们做放大、旋转、裁切这三个数据增强的操作tf = transforms.Compose([# 这里需要将路径变成具体的图片数据类型# 即:string path => image datalambda x: Image.open(x).convert('RGB'),# Resize工作,这里的size是我们实例化时的self.resize的值# 1、data augmentation放大:在Resize设置的基础上,稍微调大一些size, 调整为1.25倍transforms.Resize((int(self.resize * 1.25), int(self.resize * 1.25))),# 2、data augmentation旋转:增加随机旋转,注意:这里旋转角度不能太大,会增加学习的难度。transforms.RandomRotation(15),# 3、data augmentation中心裁切:裁切为我们所需要的大小transforms.CenterCrop(self.resize),# 将数据变为tensor类型transforms.ToTensor(),# 4、normalize处理,希望图片数值范围在0左右分布,而不希望数值只分布在0的右侧或只在左侧# 其中参数统计的所有image net数据集几百万张图片的mean=[R的mean,G的mean,B的mean]和std=[R的方差,G的方差,B的方差]# 基本上这个数值是通用的# 数据通过Normalize处理后,就是在-1到1之间分布了。transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])img = tf(img)label = torch.tensor(label)return img, label# 创建一个调试函数:
def main():# 七、验证自定义数据集# 验证需要一些辅助函数,用visdom做一些可视化。import visdomimport timeimport torchvision  # 通过API较为简便的加载自定义数据集,需要引入torchvision# 创建一个visdom这个对象viz = visdom.Visdom()# 十一、通过API较为简便的加载自定义数据集(前提是数据集按照不同类型存储在对应类型命名的文件夹下面,并且这些不同类别的文件夹都存储在统一的一个文件夹下,只有这种固定的二级目录存储形式才能用这个API进行加载。)tf = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor()])# 参数1:传入路径# 参数2:变换器,这个变换器就是进行resize操作db = torchvision.datasets.ImageFolder(root='F:\\train', transform=tf)loader = DataLoader(db, batch_size=32, shuffle=True)print(db.class_to_idx)  # 通过这个就能知道不同类别是如何编码的了。if __name__ == '__main__':main()

        将上面代码修改即可;

四,模型训练;

        这里我们需要用到可视化工具来查看我们训练效果。

        安装visdom:

pip install visdom

        在pycharm命令界面启动visdom:

python -m visdom.server  

        正常启动在浏览器输入localhost:8097打开可视化界面;

        准备工作完成,编写模型训练代码,这么我们直接使用Pytorch自带的神经网络resnet18模型;

import torch
from torch import optim, nn
import visdom
import torchvision
from torch.utils.data import DataLoaderfrom pokemon import Pokemonfrom torchvision.models import resnet18  # 这个resnet18是已经training好的状态from utils import Flatten  # 用于打平,这个是自己来实现的打平层batchsz = 32
lr = 1e-3
epochs = 40device = torch.device('cuda')
torch.manual_seed(1234)  # 这个是随机数种子,保证每次都能复现出来。# 这里是需要实例化Pokemon类
# 这里之所以使用224,是因为是ResNet最适合的大小。
train_db = Pokemon('F:\\train', 224, 'train')
val_db = Pokemon('F:\\train', 224, 'val')
test_db = Pokemon('F:\\train', 224, 'test')# 批量加载数据
# 参数num_workers表示工作线程数:
train_loader = DataLoader(train_db, batch_size=batchsz, shuffle=True, num_workers=4)val_loader = DataLoader(val_db, batch_size=batchsz, num_workers=2)test_loader = DataLoader(test_db, batch_size=batchsz, num_workers=2)# 需要把train的进度保存下来,需要用到visdom
viz = visdom.Visdom()# 建立一个测试函数:测试函数针对validation和test功能是一样的
def evalute(model, loader):# 用于统计总的预测正确的数量correct = 0# 总的测试数量total = len(loader.dataset)for x, y in loader:x, y = x.to(device), y.to(device)with torch.no_grad():  # test和validation是不需要梯度信息的logits = model(x)pred = logits.argmax(dim=1)  # 最大的值所在的位置# 总的预测正确的数量,累加操作correct += torch.eq(pred, y).sum().float().item()accuracy = correct / totalreturn accuracydef main():# 实例化模型# 使用已经训练好的resnet18模型,一定要设置这个参数pretrained=Truetrained_model = resnet18(pretrained=True)# 我们要使用训练好的resnet18模型的A部分,即取出前17层:# Sequential结束的是一个打散的数据,所有我们在list前加一个*,*args:接收若干个位置参数,转换成元组tuple形式。model = nn.Sequential(*list(trained_model.children())[:-1]  # model的前17层(即A部分)返回的结果是:[b,512,1,1], Flatten()  # 打平操作从[b,512,1,1]=>[b,512], nn.Linear(512, 14)  # 这层是最后那层,用于从新学习分成14类。(第二个参数为自定义数据集实际训练种类数量,根据自己数据集的种类数据传递实际值)).to(device)# 我们从已经训练好的resnet18开始训练效果会好很多# # 这里我们测试一下# x = torch.randn(2,3,224,224)# print(model(x).shape)#打印结果为:torch.Size([2, 5])# #这样就实现了transfer learning# ======================================================# 创建一个优化器Adam,这个优化器比较好optimizer = optim.Adam(model.parameters(), lr=lr)# Loss的计算方法:CrossEntropyLoss;# 这个Loss所接受的参数是logits,logits是不需要经过一个softmax的,只需要得到logits即可。criteon = nn.CrossEntropyLoss()# 用于保存模型的训练状态best_acc, best_epoch = 0, 0# step每次都是从0开始的,因此这里我们创建一个全局stepglobal_step = 0# 用visdom工具保存下accuracy和loss# training和loss的曲线# x=0,y=-1是初始状态viz.line([0], [-1], win='loss', opts=dict(title='loss(损失值)'))# training和validation accuracy的曲线viz.line([0], [-1], win='val_acc', opts=dict(title='val_acc(准确率)'))# training逻辑for epoch in range(epochs):for step, (x, y) in enumerate(train_loader):# x:[b,3,224,224]; y:[b]x, y = x.to(device), y.to(device)  # x和y都转移到cuda上面# 执行forward函数logits = model(x)  # 学出的预测结果# 在pytorch中crossEntropyLoss中,传入的真实值y不需要进行one-hot操作,不需要做one-hot编码,会在内部做one-hot。# 所以我们直接传入y就可以了。loss = criteon(logits, y)  # 预测结果与真实值进行交叉熵计算# 前向传播和迭代过程# 优化器optimizer.zero_grad()loss.backward()optimizer.step()# 用visdom工具保存下accuracy和loss# 每一个step我都要记录下来# validation和loss的曲线# x=loss.item()loss是一个tensor,因此需要通过item转为具体数值,y=-1是初始状态# 参数update为append,表示添加到曲线的末尾。viz.line([loss.item()], [global_step], win='loss', update='append')global_step += 1# 这里我们每完成两个epoch就做一组validationif epoch % 1 == 0:# 我们根据validation accuracy来选择要不要保存这个模型的训练状态。val_acc = evalute(model, val_loader)# 如果当前accuracy大于best_acc,就保存当前的状态:if val_acc > best_acc:best_epoch = epochbest_acc = val_acc# 保存当前模型的状态:# 参数一:模型状态值# 参数二:模型状态保存的文件名,文件名后缀随意torch.save(model, 'best-pro.pth')# validation和 accuracy的曲线# 这里val_acc是数值型,所以不需要转换。viz.line([val_acc], [global_step], win='val_acc', update='append')print('best acc:', best_acc, 'best epoch:', best_epoch)# 从最好的状态加载模型:# model.load_state_dict(torch.load('best-pro.ptl'))# print('loaded from check point!')## # 上面加载了最好的模型状态,这里使用的模型也是最好的状态时的模型# test_acc = evalute(model, test_loader)# print('test_acc:', test_acc)if __name__ == '__main__':main()

这里我们用到了一个util:

from matplotlib import pyplot as plt
import torch
from torch import nn# 该函数是一个标准的打平层
class Flatten(nn.Module):# 该文件utils包含一些辅助函数。def __init__(self):super(Flatten, self).__init__()def forward(self, x):shape = torch.prod(torch.tensor(x.shape[1:])).item()return x.view(-1, shape)# 该函数是将img打印到matplotlib上
def plot_image(img, label, name):fig = plt.figure()for i in range(6):plt.subplot(2, 3, i + 1)plt.tight_layout()plt.imshow(img[i][0] * 0.3081 + 0.1307, cmap='gray', interpolation='none')plt.title("{}: {}".format(name, label[i].item()))plt.xticks([])plt.yticks([])plt.show()

运行函数打开可视化界面,查看训练情况;

        刚开始训练的情况,使用数据量大概1.6w张最终结果大概是准确率96%。已经非常好了。

五,模型验证;

import numpy as np
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
from PIL import Imagedevice = torch.device('cuda')def main():labels = ['兔子', '吊兰', '文竹', '月季', '枸骨', '狗', '狮子', '猫', '绿萝', '老虎', '菊花', '蛇', '迎春花', '龟背竹']image_path = "C:/Users/LENOVO/Desktop/dog.png"image = Image.open(image_path)image = image.resize((256, 256), Image.BILINEAR).convert("RGB")image = np.array(image)to_tensor = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))])image = to_tensor(image)image = torch.unsqueeze(image, 0)image = image.cuda()model = torch.load("刚才训练好的模型")model.eval()model.to(device)output = model(image)output1 = F.softmax(output, dim=1)predicted = torch.max(output1, dim=1)[1].cpu().item()outputs2 = output1.squeeze(0)confidence = outputs2[predicted].item()confidence = round(confidence, 3)print("识别结果: ", labels[predicted], " 准确率为: ", confidence * 100, "%")if __name__ == '__main__':main()

        测试图片:

        labels为我们训练的类别数组,和cvs的索引对应。

多次测试结果全对,准确率不低于95%。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/150540.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

15经验模态分解及其改进程序,EMD,EEMD, CEEMDAN,三合一程序,已调试完成,替换自己数据可直接跑。

经验模态分解及其改进程序,EMD,EEMD, CEEMDAN,三合一程序,已调试完成,替换自己数据可直接跑。

Altium Designer培训 | 1 - 软件安装新建工程篇

目录 写在开头 工作环境 软件安装 心得 中英文切换 更改系统设置 快速启动AD 禁止AD收集个人信息 设置工程文件路径 不检查更新 禁止联网 防火墙的入站出站规则 新建入站规则 新建出站规则 工程的组成及创建 工程组成 创建工程 1.创建工程文件 2.创建原理图…

JavaScript系列从入门到精通系列第十九篇:JavaScript中的this关键字

文章目录 前言 一:什么是this 二:this的灵活妙用 前言 function fun(a,b){console.log(a b); }fun(1,2); 我们通过形参的形式往参数中添加了参数。浏览器也会默默的给我们传递一个参数过去,这个参数被称为this。传递的节点就是在调用函…

基于知识蒸馏的两阶段去雨去雪去雾模型学习记录(三)之知识测试阶段与评估模块

去雨去雾去雪算法分为两个阶段,分别是知识收集阶段与知识测试阶段,前面我们已经学习了知识收集阶段,了解到知识阶段的特征迁移模块(CKT)与软损失(SCRLoss),那么在知识收集阶段的主要重点便是HCRLoss(硬损失…

Unity可视化Shader工具ASE介绍——2、ASE的Shader创建和输入输出

大家好,我是阿赵,这里继续介绍Unity可视化写Shader的ASE插件的用法。上一篇介绍了ASE的安装和编辑器界面分布,这一篇主要是通过一个简单的例子介绍shader的创建和输入输出。 一、ASE的Shader创建 这里先选择Surface类型的Shader,…

Java高级之反射

关于反射的举例: 示例代码:Fan.java package testFanShe;/*** author: Arbicoral* Description: 测试反射:* 成员变量:2个public,2个private* 构造器:4个public&#x…

Glide源码分析

一,Glide一次完整的加载流程 下面的流程图是一次完整的使用Glide加载图片流程,时序图 二,Glide重要的类图 三,Glide加载图片 流程图

【软件工程_UML—StartUML作图工具】startUML怎么画interface接口

StartUML作图工具怎么画interface接口 初试为圆形 ,点击该接口在右下角的设置中->Format->Stereotype Display->Label,即可切换到想要的样式 其他方式 在class diagram下,左侧有interface图标,先鼠标左键选择&#xff0…

氟化钙光学窗口保护镜片 光学元件红外测温窗口保护片

氟化钙光学窗口保护镜片 光学元件红外测温窗口保护片 常见镜片材料 特此记录 anlog 2023年10月7日

大语言模型之十四-PEFT的LoRA

在《大语言模型之七- Llama-2单GPU微调SFT》和《大语言模型之十三 LLama2中文推理》中我们都提到了LoRA(低秩分解)方法,之所以用低秩分解进行参数的优化的原因是为了减少计算资源。 我们以《大语言模型之四-LlaMA-2从模型到应用》一文中的图…

windows内核编程(2021年出版)笔记

1. Windows内部概览 1.1 进程 进程包含以下内容: 可执行程序,代码和数据私有的虚拟地址空间,分配内存时从这里分配主令牌,保存进程默认安全上下文,进程中的线程执行代码时会用到它私有句柄表,保存进程运…

QT实现tcp服务器客户端

服务器.cpp #include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this);//实例化一个服务器server new QTcpServer(this);// 此时,服务器已经成功进入监听状态…

DirectX12_Windows_GameDevelop_3:Direct3D的初始化

引言 查看龙书时发现,第四章介绍预备知识的代码不太利于学习。因为它不像是LearnOpenGL那样从头开始一步一步教你敲代码,导致你没有一种整体感。如果你把它当作某一块的代码进行学习,你跟着敲会发现,总有几个变量是没有定义的。这…

Linux系统及Docker安装RabbitMq

目录 一、linux系统安装 1、上传文件 2、在线安装依赖环境 3、安装Erlang 4、安装RabbitMQ 5、开启管理界面及配置 6、启动 7、删除mq 二、docker安装 1、上传mq.tar包或使用命令拉取镜像 2、启动并运行 3、访问mq 一、linux系统安装 1、上传文件 2、在线安装依赖环…

3. 无重复字符的最长子串(枚举+滑动窗口)

目录 一、题目 二、代码 一、题目 力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 二、代码 class Solution { public:int lengthOfLongestSubstring(string s) {int _MaxLength 0;int left 0, right 0;vector<int>hash(128, 0);//ASCII…

Qt扫盲-QTreeView 理论总结

QTreeView 理论使用总结 一、概述二、快捷键绑定三、提高性能四、简单实例1. 设计与概念2. TreeItem类定义3. TreeItem类的实现4. TreeModel类定义5. TreeModel类实现6. 在模型中设置数据 一、概述 QTreeView实现了 model 中item的树形表示。这个类用于提供标准的层次列表&…

C#上位机——根据命令发送

C#上位机——根据命令发送 第一步&#xff1a;设置窗口的布局 第二步&#xff1a;设置各个属性 第三步&#xff1a;编写各个模块之间的关系

第九课 排序

文章目录 第九课 排序排序算法lc912.排序数组--中等题目描述代码展示 lc1122.数组的相对排序--简单题目描述代码展示 lc56.合并区间--中等题目描述代码展示 lc215.数组中的第k个最大元素--中等题目描述代码展示 acwing104.货仓选址--简单题目描述代码展示 lc493.翻转树--困难题…

OMV6 安装Extras 插件失败的解决方法

# Time: 2023/10/07 #Author: Xiaohong # 运行环境: OS: OMV6 # 功能: 安装Extras 插件失败的解决方法 问题描述&#xff1a;OMV6 安装插件omv-extras&#xff0c;只能按如下提示的命令行&#xff0c;但安装过程中&#xff0c;会提示raw.githubusercontent.com 无法访问插…

抖音账号矩阵系统开发源码----技术研发

一、技术自研框架开发背景&#xff1a; 抖音账号矩阵系统是一种基于数据分析和管理的全新平台&#xff0c;能够帮助用户更好地管理、扩展和营销抖音账号。 抖音账号矩阵系统开发源码 部分源码分享&#xff1a; ic function indexAction() { //面包屑 $breadc…