【1.1】神经网络:关于神经网络的介绍

作者简介:大家好,我是 Meteors., 向往着更加简洁高效的代码写法与编程方式,持续分享Java技术内容。
🍎个人主页:Meteors.的博客
💞当前专栏: 神经网络(随缘更新)
特色专栏: 知识分享
🥭本文内容:【1.1】神经网络:神经网络基础知识
📚 ** ps **  : 阅读这篇文章如果有问题或者疑惑,欢迎各位在评论区提问或指出!

 -----------------------------------------------------       目录       ---------------------------------------------------------

目录

一、介绍

1. 概念

2. 知识架构

二、神经网络的应用领域

1. 图像识别

2. 语音识别

3. 自然语言处理

三、神经网络的训练和优化算法

1. 概念

2. 常见的一些优化算法

1)反向传播算法

2)随机梯度下降

3)自适应学习率算法

4)正则化技术

5)预训练和微调

6)其他算法

四、神经网络的挑战和未来发展

1.挑战

2. 发展方向

五、神经网络与人工智能的关系

六、神经网络的实践和应用指南


---------------------------------------------------------------------------------------------------------------------------------

一、介绍

1. 概念

神经网络:一种以(人工)神经元为基础的基本单元模型(主要就是学习这个计算模型)


2. 知识架构

二、神经网络的应用领域

通过学习从输入到输出的映射关系,从而实现各种任务,常见的有:

1. 图像识别

        通常采用卷积神经网络(Convolutional Neural Networks, CNN)的结构。CNN能够通过学习图像中的特征来实现图像分类、目标检测和图像分割等任务。它的核心是卷积层和池化层,通过层层堆叠,提取图像的低级特征到高级抽象特征(重点),最后通过全连接层进行分类。

2. 语音识别

        循环神经网络(Recurrent Neural Networks, RNN)和其变种是常用的模型。RNN可以建模序列数据的依赖关系,对语音信号进行处理并转换为文本信息。通过训练,RNN可以学习到语音信号的语义信息和发音规律,并进行准确的文本转录。

3. 自然语言处理

        常用的神经网络模型包括循环神经网络(RNN)、长短期记忆网络(Long Short-Term Memory, LSTM)和注意力机制(Attention Mechanism)。这些模型可以处理语言的序列性质,实现文本分类、命名实体识别、情感分析、机器翻译等任务。通过预训练的语言模型(如BERT、GPT等),还可以生成连贯的文本

三、神经网络的训练和优化算法

1. 概念

神经网络的训练和优化算法是为了调整网络参数,使其能够更好地适应输入数据并减小损失函数(重点)ps:损失函数可以大概理解为得出的结果和目标的差距


2. 常见的一些优化算法

1)反向传播算法

反向传播是一种基于梯度下降的优化算法,通过计算损失函数对参数的梯度,并将该梯度进行反向传播,更新网络中的参数。它是神经网络最常用的训练算法之一。

2)随机梯度下降

SGD是一种基于梯度的优化算法,每次迭代使用一小批样本(称为mini-batch)来计算损失函数的梯度和更新参数。相比于全批量梯度下降,SGD具有更低的计算成本和更快的收敛速度。

3)自适应学习率算法

为了提高梯度下降算法的效果,一些自适应学习率算法被提出。其中包括Adagrad、RMSprop、Adam等,它们在更新参数时会根据历史梯度信息动态地调整学习率,从而加快收敛速度和提高性能。

4)正则化技术

为了防止过拟合(overfitting),正则化技术被广泛应用于神经网络训练中。常见的正则化技术包括L1正则化、L2正则化以及Dropout等。它们通过对损失函数引入正则化项,限制模型参数的复杂性,提高模型的泛化能力。

5)预训练和微调

对于深度神经网络,预训练和微调是一种常见的训练策略。预训练阶段使用无监督学习方法初始化网络参数,然后在有标签数据上进行微调。这种策略可以帮助网络更好地初始化参数,并提高性能。

6)其他算法

如批归一化(Batch Normalization)、学习率衰减(Learning Rate Decay)、梯度剪裁(Gradient Clipping)等,它们都可以在特定场景下提升神经网络的训练效果和收敛速度。

四、神经网络的挑战和未来发展

1.挑战

神经网络的训练(为了缩小和最终目标的差距)需要大量的数据进行训练,并要求这些数据需要高质量和具有代表性(比较难找)。神经网络的训练和推理需要大量的计算资源,于大规模的深度神经网络,其计算复杂度非常高(不仅烧显卡,还费时间)。由于神经网络的黑盒模型特性,神经网络的输出结果难以被理解和解释。这导致神经网络在某些场景下无法得到广泛的应用(难)


2. 发展方向

  1. 模型优化:通过优化神经网络结构、训练方法和算法,以更高效、更准确和更能够解释的方式解决上述挑战。

  2. 自动机器学习(AutoML):自动机器学习是一种利用人工智能和优化技术进行神经网络自动设计和调参的方法,将大大提高神经网络的可用性和可靠性,加速人工智能应用的发展。

  3. 多模态学习:多模态学习将不同类型的数据合并到一个模型中,例如图像和语音、文本和图像等,使神经网络可以更好地处理复杂的跨模态信息,并得到更为准确和全面的结果。

  4. 强化学习和自适应学习:通过将神经网络与强化学习和自适应学习相结合,提高神经网络在控制系统、自主智能和自适应学习等方面的表现。

五、神经网络与人工智能的关系

神经网络是人工智能(AI)的一个重要组成部分。

人工智能是研究和开发能够模拟和实现人类智能的理论、方法和技术。

而神经网络作为一种模拟生物神经系统的计算模型,可以用来解决人工智能中的诸多问题。(诸如上面提到的应用领域)

六、神经网络的实践和应用指南

神经网络的实践和应用涉及多个环节,大致包括数据准备、网络架构选择、参数设置和调优、数据增强和预处理、训练与验证、模型评估与部署等(这里就不冗余的列出了,后续会进行具体的更新)。持续学习和优化是神经网络应用过程中的关键。

 


最后,

        后续内容会陆续更新,希望文章对你有所帮助!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/151541.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker 镜像的缓存特性

Author:rab 目录 前言一、构建缓存二、Pull 缓存总结 前言 首先我们要清楚,Docker 的镜像结构是分层的,镜像本身是只读的(不管任何一层),当我们基于某镜像运行一个容器时,会有一个新的可写层被…

CCF中国开源大会专访|毛晓光:“联合”是开源走向“共赢”的必由之路

受访嘉宾 | 毛晓光 记者 | 朱珂欣 2023 CCF 中国开源大会( CCF ChinaOSC )拟于 2023 年 10 月 21 日至 22 日在湖南省长沙市北辰国际会议中心召开。 作为第二届 CCF 中国开源大会,本届大会将组织特邀报告、高峰论坛和领域分论坛等不同类…

echarts

1 type值汇总 不同的type的值对应的图表类型如下: type: ‘bar’:柱状/条形图 type: ‘line’:折线/面积图 type: ‘pie’:饼图 type: ‘scatter’:散点(气泡)图 type: ‘effectScatter’&…

聪明应对工程项目管理难题的方法和技巧

对于国内的工程项目管理中,经常需要面对以下几个问题: 1.项目问题相互牵扯,积累成堆:通常一个问题不能及时的解决,就会导致更多的任务无法完成,问题越堆积越严重。 2.项目延期,增加成本&#xf…

NSA 和 CISA 联合揭露当下十大网络安全错误配置

10月5日,美国国家安全局 (NSA) 和网络安全与基础设施安全局 (CISA) 公布了十大目前最常见的网络安全错误配置,这些错误由红蓝团队在大型组织网络中发现。 根据发布的联合报告,团队评估了国防部 (DoD)、联邦民事行政部门 (FCEB)、州和地方政府…

ASP.NET Core教程:ASP.NET Core 程序部署到Windows系统

框架依赖 一、发布 框架依赖(FDD):即Framework-dependent deployments的缩写。这种发布方式依赖于Framework框架,即要部署的服务器上面必须按照ASP.NET Core 运行时环境(ASP.NET Core Runtime)。这种部署方式是微软默认推荐的。下…

C#中的数组探究与学习

目录 C#中的数组一般分为:一.数组定义:为什么要使用数组?什么是数组?C#一维数组for和foreach的区别C#多维数组C#锯齿数组初始化的意义:适用场景: C#中的数组一般分为: ​①.一维数组。 ②.多维…

分布式文件系统HDFS(林子雨慕课课程)

文章目录 3. 分布式文件系统HDFS3.1 分布式文件系统HDFS简介3.2 HDFS相关概念3.3 HDFS的体系结构3.4 HDFS的存储原理3.5 HDFS数据读写3.5.1 HDFS的读数据过程3.5.2 HDFS的写数据过程 3.6 HDFS编程实战 3. 分布式文件系统HDFS 3.1 分布式文件系统HDFS简介 HDFS就是解决海量数据…

读书笔记——C++高性能编程(一至三)

《C高性能编程》作者:费多尔.G.皮克斯 版本:2022年11月第1版 第一章.性能基础 描述了吞吐量,功耗,实时应用性能的含义。 阐述了“虽然几乎不可能提前预测最佳优化,但是可以确定某些设计决策将使后续优化变得非常困难…

C/C++ 进程间通信system V IPC对象超详细讲解(系统性学习day9)

目录 前言 一、system V IPC对象图解 1.流程图解: ​编辑 2.查看linux内核中的ipc对象: 二、消息队列 1.消息队列的原理 2.消息队列相关的API 2.1 获取或创建消息队列(msgget) 实例代码如下: 2.2 发送消息到消…

单元测试该怎么写

单元测试对于开发人员来说很熟悉,各种语言都提供了单元测试的框架,用于自动化执行单元测试并生成测试报告。它通常提供了一组API和工具,使开发人员能够编写和运行测试用例,比较预期行为和实际行为之间的差异,并准确地识…

多线程锁-synchronized字节码分析

从字节码角度分析synchronized实现 javap -c(v附加信息) ***.class 文件反编译 synchronized同步代码块 >>>实现使用的是monitorenter和monitorexit指令 synchronized普通同步方法 >>>调用指令将会检查方法的ACC_SYNCHRONIZED访问标志是否被设置&#xf…

【数据结构-二叉树 九】【树的子结构】:树的子结构

废话不多说,喊一句号子鼓励自己:程序员永不失业,程序员走向架构!本篇Blog的主题是【子结构】,使用【二叉树】这个基本的数据结构来实现,这个高频题的站点是:CodeTop,筛选条件为&…

不同数据类型在单片机内存中占多少字节?

文章目录 前言一、不同编译器二、C51* 指针型 三、sizeof结构体联合体 前言 在C语言中,数据类型指的是用于声明不同类型的变量或者函数的一个广泛的系统。变量的类型决定了变量存储占用的空间 一、不同编译器 类型16位编译器大小32位编译器大小64位编译器大小char…

Kafka 简介之(学习之路)

正文 一、简介 1.1 概述 Kafka是最初由Linkedin公司开发,是一个分布式、分区的、多副本的、多订阅者,基于zookeeper协调的分布式日志系统(也可以当做MQ系统),常见可以用于web/nginx日志、访问日志,消息服务…

软件设计原则 1小时系列 (C++版)

文章目录 前言基本概念 Design Principles⭐单一职责原则(SRP) Single Responsibility PrincipleCode ⭐里氏替换原则(LSP) Liskov Substitution PrincipleCode ⭐开闭原则(OCP) Open Closed PrincipleCode ⭐依赖倒置原则(DIP) Dependency Inversion PrincipleCode ⭐接口隔离…

【抢先体验】开通使用 ChatGPT 语音版功能保姆级教程

大家好,我是苍何,一个土木转码的非典型程序员,也是一名技术管理者,同时也是 AI 应用的探索者。今天在视频号上看到和 ChatGPT 语音对话的视频,其声音的真实感太让人震撼了,于是也想去抢先体验一下 ChatGPT …

Centos7安装MongoDB7.xxNoSQL数据库|设置开机启动(骨灰级+保姆级)

一: mongodb下载 MongoDB 社区免费下载版 MongoDB社区下载版 [rootwww tools]# wget https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel70-7.1.0-rc4.tgz 二: 解压到指定目录 [rootwww tools]# mkdir -p /usr/local/mongodb [rootwww tools]# tar -zxvf mongodb-…

选择适合普通公司的项目管理软件

不管是打工人还是学生党都适合使用Zoho Projects项目管理软件。利用项目概览功能,将整体项目尽收眼底,作为项目管理者,项目日程、进度都可见,Zoho Projects项目管理APP助推项目每一环节的进展,更便于管理者设计项目的下…

ThingsBoard如何自定义tcp-transport

1、概述 很久没有更新了,一直忙于其他的事情,最近去搞了一个在ThingsBoard中自定义一个tcp-transport,用于连接使用tcp长连接的设备,目前使用tcp和mqtt协议连接服务端的设备还是很多,ThingsBoard的PE版提供了Integration是可以实现tcp的接入,但是CE版是没有提供接入tcp长…