前端性能优化之防抖节流

前端性能优化之防抖&节流

  • 1.什么是防抖和节流
  • 2.代码实现
    • 2.1 实现防抖
    • 2.2 实现节流
  • 3.应用场景
    • 3.1 防抖的应用
    • 3.2 节流的应用

1.什么是防抖和节流

防抖和节流是前端开发中常用的两种性能优化技术。

为什么需要防抖和节流呢?

两者目的都是为了防止某个时间段内操作频繁触发,造成性能消耗。

防抖:在事件被触发 n 秒后再执行回调,如果在这 n 秒内事件又被触发,则重新计时。

节流: n 秒内只执行一次事件,即使n 秒内事件重复触发,也只有一次生效。

可能很多人看了概念还是不太清楚这两者到底有什么区别,下面就通过一个简单的案例来说明。

let btn = document.getElementById('btn')
//模拟发送请求
function req(){console.log('发送请求')
}
btn.addEventListener('click', req)

以上代码简单实现了一个点击按钮的事件,每点击一次按钮就调用一次函数发送请求,效果如下:

在这里插入图片描述
如果对函数做了防抖

btn.addEventListener('click', debounce(req, 1000)) //防抖,时间设为1秒

1秒内疯狂点击按钮,事件都不会被触发,只有当不再点击按钮后,过了1秒,事件才被触发。效果是下面这样的:

在这里插入图片描述

如果对函数做了节流

btn.addEventListener('click',throttle(req, 1000)) //节流,时间设为1秒

1秒内疯狂点击按钮,事件都只被触发一次。效果是下面这样的:

在这里插入图片描述

由此可以看出,两者的区别:防抖是一段时间内只执行最后一次,节流是一段时间内只执行一次。如下图所示:

在这里插入图片描述

2.代码实现

下面就来分别实现一下防抖和节流。

2.1 实现防抖

防抖的实现思路:使用闭包来保存定时器变量 timer。事件触发后开启一个定时器,如果在 delay 时间内再次触发事件,就会清除之前的

定时器并设置一个新的定时器,直到 delay 时间内不再触发事件,定时器到达时间后执行传入的函数 fn。

function debounce(fn, delay = 500) {let timer = null;// 这里返回的函数是每次用户实际调用的防抖函数return function(...args) {	// 如果已经设定过定时器了就清空上一次的定时器if(timer) {clearTimeout(timer);	}// 开始一个新的定时器,延迟执行用户传入的方法,这里必须是箭头函数,要让this指向fn的调用者timer = setTimeout(() => {  fn.apply(this, args);   }, delay)	}
}

2.2 实现节流

节流的实现思路:同样使用闭包来保存定时器变量 timer。每次触发事件时,如果定时器不存在,就设置一个定时器,并在 delay 时间后

执行传入的函数 fn。如果在 delay 时间内再次触发事件,由于定时器还存在,就不会执行传入的函数 func。

function throttle(fn, delay = 500) {let timer = null;return function(...args) {// 当前有任务了,直接返回if(timer) {return;}timer = setTimeout(() => {fn.apply(this, args);//执行完后,需重置定时器,不然timer一直有值,无法开启下一个定时器timer = null;	}, delay)}
}

节流还有一种更简单的时间戳版本,思路就是两次触发的时间间隔到了指定时间就执行,否则不执行。

function throttle(fn, delay = 500) {let prev = Date.now();// 上一次时间return function(...args) {let now = Date.now();//当前时间// 时间间隔到了就执行函数if (now - prev >= delay) {fn.apply(this, args);prev = Date.now();}};
}

3.应用场景

3.1 防抖的应用

防抖的主要应用场景是优化搜索框的输入,用户在不断输入值时,用防抖来节约请求资源,当用户最后一次输入完,再发送请求。

案例:搜索查询

<body>
<input type="text" id="search" />
<script>const search = document.getElementById("search");//模拟发送请求function req() {console.log('发送请求查询结果...');}search.addEventListener('keyup', req);
</script>
</body>

运行效果如下:

在这里插入图片描述
如上所示,在表单中输入内容,键盘弹起时就会触发keyup事件,发送请求去查询内容,这样频繁的触发事件发送请求会增加性能消耗,

同时也会增加服务器的压力,并且实际应用中,只需用户最后一次输入完,再发送请求,于是我们可以使用防抖进行优化。

<body>
<input type="text" id="search" />
<script>const search = document.getElementById("search");//模拟发送请求function req() {console.log('发送请求查询结果...');}function debounce(fn, delay = 500) {let timer = null;return function(...args) {	if(timer) {clearTimeout(timer);	}timer = setTimeout(() => {  fn.apply(this, args);   }, delay)	}}search.addEventListener('keyup', debounce(req, 1000));
</script>
</body>

防抖后的效果:

在这里插入图片描述
可以看到,利用防抖,当用户频繁输入时,并不会发送请求,只有在指定间隔内没有输入时,才触发查询,这样就提高了浏览器性能。

3.2 节流的应用

节流的主要应用场景是优化滚动事件,当用户滚动页面时,会频繁触发滚动事件,使用节流可以控制滚动事件的触发频率,避免过多的计算和渲染操作,提高页面的性能和流畅度。

案例:监听计算滚动条位置

//模拟计算滚动位置
function compute() {console.log('计算滚动条位置');
}
window.addEventListener('scroll', compute)

运行效果如下:
在这里插入图片描述
如上所示,有些场景下需要去计算判断滚动条的位置,比如是否加载更多,当我们滚动浏览器的滚动条时,会频繁触发scroll事件,造成频繁的判断滚动条位置,可以利用节流进行优化。

//模拟计算滚动位置
function compute() {console.log('计算滚动条位置');
}
function throttle(fn, delay = 500) {let prev = Date.now();return function(...args) {let now = Date.now();if (now - prev >= delay) {fn.apply(this, args);prev = Date.now();}};
}
window.addEventListener('scroll', throttle(compute, 200))

节流后的效果:

在这里插入图片描述
可以看到,利用节流,可以按一定时间的频率来计算判断滚动条位置,然后决定是否加载更多,这样就能减少浏览器性能的消耗。

以上就是本文的分享了,如有错误,欢迎指正!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/151557.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux登录自动执行脚本

一、所有用户每次登录时自动执行。 1、在/etc/profile文件末尾添加。 将启动命令添加到/etc/profile文件末尾。 2、在/etc/profile.d/目录下添加sh脚本。 在/etc/profile.d/目录下新建sh脚本&#xff0c;设置每次登录自动执行脚本。有用户登录时&#xff0c;/etc/profile会遍…

Docker的数据管理、端口映射和容器互联

目录 一、如何管理docker容器中的数据 1、数据卷 2、数据卷容器 二、端口映射 三、容器互联&#xff08;使用centos镜像&#xff09; 一、如何管理docker容器中的数据 管理 Docker 容器中数据主要有两种方式&#xff1a;数据卷&#xff08;Data Volumes&#xff09;和数据…

四、互联网技术——局域网拓扑结构

文章目录 一、局域网拓扑结构二、虚拟局域网VLAN三、交换机VLAN划分四、VLAN的作用五、交换机的端口类型六、经典三层网络架构七、例题:局域网带宽利用分析八、网络安全基础九、恶意软件十、防火墙与入侵检测技术一、局域网拓扑结构 局域网的主要特征由网络的拓扑结构、所采用的…

【Docker】简易版harbor部署

文章目录 依赖于docker-compose下载添加执行权限测试 安装harbor下载解压修改配置文件部署配置开机自启动登录验证 使用harbor登录打标签上传下载 常见问题 依赖于docker-compose 下载 curl -L “https://github.com/docker/compose/releases/download/2.22.0/docker-compose-…

基于javaweb的智慧社区设计与实现

目录 前言 一、技术栈 二、系统功能介绍 客户信息管理 客户信息管理 社区信息管理 车位租买支付 前台车位信息 车位预定提交 问卷调查管理 三、核心代码 1、登录模块 2、文件上传模块 3、代码封装 前言 随着信息技术在管理上越来越深入而广泛的应用&#xff0c;管理…

【物联网】Arduino+ESP8266物联网开发(二):控制发光二极管 按钮开关控制开关灯

【物联网】ArduinoESP8266物联网开发(一)&#xff1a;开发环境搭建 安装Arduino和驱动 2.ESP8266基础应用 学习过程中会用到的基础引脚如下。开发板提供3V电源&#xff0c;一般传感器工作电压都是3V&#xff0c;可通过开发板供电。如果设备需要的电压超过3V&#xff0c;如水泵…

c++视觉图像线性混合

图像线性混合 使用 cv::addWeighted() 函数对两幅图像进行线性混合。alpha 和 beta 是两幅图像的权重&#xff0c;它们之和应该等于1。gamma 是一个可选的增益&#xff0c;这里设置为0。 你可以通过调整 alpha 的值来改变混合比例。如果 alpha0.5&#xff0c;则两幅图像等权重…

吃鸡玩家必备!提升战斗力,分享干货,保护账号安全!

你好&#xff01;吃鸡玩家们的福利来了&#xff01;在这里&#xff0c;我将为大家分享一些关于提高游戏战斗力、分享顶级游戏作战干货以及保护账号安全的实用技巧。 首先&#xff0c;让我们来谈提高游戏战斗力的技巧。绝地求生是一款战略性的游戏&#xff0c;而好的作图工具可以…

【1.1】神经网络:关于神经网络的介绍

✅作者简介&#xff1a;大家好&#xff0c;我是 Meteors., 向往着更加简洁高效的代码写法与编程方式&#xff0c;持续分享Java技术内容。 &#x1f34e;个人主页&#xff1a;Meteors.的博客 &#x1f49e;当前专栏&#xff1a; 神经网络&#xff08;随缘更新&#xff09; ✨特色…

Docker 镜像的缓存特性

Author&#xff1a;rab 目录 前言一、构建缓存二、Pull 缓存总结 前言 首先我们要清楚&#xff0c;Docker 的镜像结构是分层的&#xff0c;镜像本身是只读的&#xff08;不管任何一层&#xff09;&#xff0c;当我们基于某镜像运行一个容器时&#xff0c;会有一个新的可写层被…

CCF中国开源大会专访|毛晓光:“联合”是开源走向“共赢”的必由之路

受访嘉宾 | 毛晓光 记者 | 朱珂欣 2023 CCF 中国开源大会&#xff08; CCF ChinaOSC &#xff09;拟于 2023 年 10 月 21 日至 22 日在湖南省长沙市北辰国际会议中心召开。 作为第二届 CCF 中国开源大会&#xff0c;本届大会将组织特邀报告、高峰论坛和领域分论坛等不同类…

echarts

1 type值汇总 不同的type的值对应的图表类型如下&#xff1a; type: ‘bar’&#xff1a;柱状/条形图 type: ‘line’&#xff1a;折线/面积图 type: ‘pie’&#xff1a;饼图 type: ‘scatter’&#xff1a;散点&#xff08;气泡&#xff09;图 type: ‘effectScatter’&…

聪明应对工程项目管理难题的方法和技巧

对于国内的工程项目管理中&#xff0c;经常需要面对以下几个问题&#xff1a; 1.项目问题相互牵扯&#xff0c;积累成堆&#xff1a;通常一个问题不能及时的解决&#xff0c;就会导致更多的任务无法完成&#xff0c;问题越堆积越严重。 2.项目延期&#xff0c;增加成本&#xf…

NSA 和 CISA 联合揭露当下十大网络安全错误配置

10月5日&#xff0c;美国国家安全局 (NSA) 和网络安全与基础设施安全局 (CISA) 公布了十大目前最常见的网络安全错误配置&#xff0c;这些错误由红蓝团队在大型组织网络中发现。 根据发布的联合报告&#xff0c;团队评估了国防部 (DoD)、联邦民事行政部门 (FCEB)、州和地方政府…

ASP.NET Core教程:ASP.NET Core 程序部署到Windows系统

框架依赖 一、发布 框架依赖&#xff08;FDD&#xff09;&#xff1a;即Framework-dependent deployments的缩写。这种发布方式依赖于Framework框架&#xff0c;即要部署的服务器上面必须按照ASP.NET Core 运行时环境(ASP.NET Core Runtime)。这种部署方式是微软默认推荐的。下…

C#中的数组探究与学习

目录 C#中的数组一般分为&#xff1a;一.数组定义&#xff1a;为什么要使用数组&#xff1f;什么是数组&#xff1f;C#一维数组for和foreach的区别C#多维数组C#锯齿数组初始化的意义&#xff1a;适用场景&#xff1a; C#中的数组一般分为&#xff1a; ​①.一维数组。 ②.多维…

分布式文件系统HDFS(林子雨慕课课程)

文章目录 3. 分布式文件系统HDFS3.1 分布式文件系统HDFS简介3.2 HDFS相关概念3.3 HDFS的体系结构3.4 HDFS的存储原理3.5 HDFS数据读写3.5.1 HDFS的读数据过程3.5.2 HDFS的写数据过程 3.6 HDFS编程实战 3. 分布式文件系统HDFS 3.1 分布式文件系统HDFS简介 HDFS就是解决海量数据…

读书笔记——C++高性能编程(一至三)

《C高性能编程》作者&#xff1a;费多尔.G.皮克斯 版本&#xff1a;2022年11月第1版 第一章.性能基础 描述了吞吐量&#xff0c;功耗&#xff0c;实时应用性能的含义。 阐述了“虽然几乎不可能提前预测最佳优化&#xff0c;但是可以确定某些设计决策将使后续优化变得非常困难…

C/C++ 进程间通信system V IPC对象超详细讲解(系统性学习day9)

目录 前言 一、system V IPC对象图解 1.流程图解&#xff1a; ​编辑 2.查看linux内核中的ipc对象&#xff1a; 二、消息队列 1.消息队列的原理 2.消息队列相关的API 2.1 获取或创建消息队列&#xff08;msgget&#xff09; 实例代码如下&#xff1a; 2.2 发送消息到消…

单元测试该怎么写

单元测试对于开发人员来说很熟悉&#xff0c;各种语言都提供了单元测试的框架&#xff0c;用于自动化执行单元测试并生成测试报告。它通常提供了一组API和工具&#xff0c;使开发人员能够编写和运行测试用例&#xff0c;比较预期行为和实际行为之间的差异&#xff0c;并准确地识…