verilog练习:i2c slave 模块设计

文章目录

  • 前言
  • 1. 结构
  • 2.代码
    • 2.1 iic_slave.v
    • 2.2 sync.v
    • 2.3 wr_fsm.v
      • 2.3.1 状态机状态解释
    • 2.4 ram.v
  • 3. 波形展示
  • 4. 建议
  • 5. 资料总结


前言

首先就不啰嗦iic协议了,网上有不少资料都是叙述此协议的。

下面将是我本次设计的一些局部设计汇总,如果对读者有借鉴意义那最好,如果没有的话也无所谓,互相交流而已。(这是我早期的版本,注释比较少,代码编写比较混乱,读者自便)

希望读者发现问题可在下方留言,我会及时回答或者修改。


1. 结构

顶层结构图在这里插入图片描述
master结构图
在这里插入图片描述
slave结构图
在这里插入图片描述

2.代码

2.1 iic_slave.v

`timescale 1ns/1psmodule iic_slave (input rstn,input clk,input scl,inout sda,input [7:0] q,  // RAM data to slaveoutput wen,output [7:0] d, // Slave data to RAMoutput [7:0] a  // Slave address to RAM
);// Internal signals
wire sync_scl_1;
wire sync_sda_1;
wire sda_posedge;
wire sda_negedge;
wire scl_posedge;
wire scl_negedge;
wire sda_out;
wire sda_oen;// Three-state gate for SDA
assign sda = (sda_oen) ? sda_out : 1'bz;// Instantiate sync module
sync sync (.clk(clk),.rstn(rstn),.scl(scl),.sda(sda),.sync_scl_1(sync_scl_1),.sync_sda_1(sync_sda_1),.sda_posedge(sda_posedge),.sda_negedge(sda_negedge),.scl_posedge(scl_posedge),.scl_negedge(scl_negedge)
);// Instantiate RAM module
ram ram (.clk(clk),.rstn(rstn),.d(d),.a(a),.q(q),.wen(wen)
);// Instantiate write FSM module
wr_fsm wr_fsm (.clk(clk),.rstn(rstn),.sync_scl_1(sync_scl_1),.sync_sda_1(sync_sda_1),.scl_posedge(scl_posedge),.scl_negedge(scl_negedge),.sda_posedge(sda_posedge),.sda_negedge(sda_negedge),.d(d),.a(a),.q(q),.wen(wen),.sda_out(sda_out),.sda_oen(sda_oen)
);endmodule

2.2 sync.v

`timescale 1ns/1ps
module sync (rstn,clk,scl,sda,sync_scl_1,sync_sda_1,sda_posedge,sda_negedge,scl_posedge,scl_negedge
);input rstn;input clk;input scl;input sda;output sync_scl_1;output sync_sda_1;output sda_posedge;output sda_negedge;output scl_posedge;output scl_negedge;reg sync_scl_1;reg sync_sda_1;reg sync_scl_0;reg sync_sda_0;always @(posedge clk or negedge rstn) beginif (!rstn) beginsync_scl_1 <= 1'b0;sync_sda_1 <= 1'b0;sync_scl_0 <= 1'b0;sync_sda_0 <= 1'b0;end else beginsync_scl_0 <= scl;sync_sda_0 <= sda;sync_scl_1 <= sync_scl_0;sync_sda_1 <= sync_sda_0;endendassign sda_posedge = (sync_sda_0) & (~sync_sda_1);assign sda_negedge = (~sync_sda_0) & (sync_sda_1);assign scl_posedge = (sync_scl_0) & (~sync_scl_1);assign scl_negedge = (~sync_scl_0) & (sync_scl_1);endmodule

2.3 wr_fsm.v

`timescale 1ns/1ps
module wr_fsm (rstn,clk,sync_scl_1,sync_sda_1,scl_posedge,scl_negedge,sda_posedge,sda_negedge,q,d,a,wen,sda_out,sda_oen
);input rstn, clk;input sync_scl_1;input sync_sda_1;input scl_posedge;input scl_negedge;input sda_posedge;input sda_negedge;input [7:0] q;output [7:0] d;output [7:0] a;output wen;output sda_out;output sda_oen;reg wen; // write and read flags regreg [7:0] scl_cnt; // clk delay counterreg [3:0] bit_cnt; // valid transfer bytereg [7:0] a; // a = save word addr, shift data to ramreg sda_out; // data out regreg sda_oen; // three state gate flag bitreg [7:0] save_ctrl; // store ctrl wordreg [7:0] save_q_data; // store data of qwire [7:0] q;parameter slave_addr = 7'b1101101; // parameter slave addrparameter scl_cnt_max = 60-1;reg [3:0] state; // state transformparameter idle       = 4'd0,w_start   = 4'd1,w_ctrl    = 4'd2,ack1      = 4'd3,w_addr    = 4'd4,ack2      = 4'd5,w_data    = 4'd6,ack3      = 4'd7,r_start   = 4'd8,r_ctrl    = 4'd9,ack4      = 4'd10,r_data    = 4'd11,ack5      = 4'd12,stop      = 4'd13;always @(posedge clk or negedge rstn)beginif (!rstn) beginstate <= idle;sda_oen <= 1'b0;sda_out <= 1'b1;scl_cnt <= 8'b0;bit_cnt <= 4'b0;sda_out <= 1'b0;end else begincase (state)idle: begin// Initialize state and signalsstate <= w_start;sda_oen <= 1'b0;sda_out <= 1'b1;scl_cnt <= 8'b0;bit_cnt <= 4'b0;sda_out <= 1'b0;endw_start: begin// Wait for start conditionif (sync_scl_1 && sda_negedge)beginstate <= w_ctrl;bit_cnt <= 4'd8;endelsestate <= w_start;endw_ctrl: begin// Control word transferif (scl_negedge)beginsave_ctrl <= {save_ctrl[6:0], sync_sda_1};bit_cnt <= bit_cnt - 1;if (bit_cnt == 4'd0)beginstate <= ack1;bit_cnt <= 4'd8;endelsestate <= w_ctrl;endelsestate <= w_ctrl;endack1: begin// Acknowledge control wordif (save_ctrl[7:1] == slave_addr)beginscl_cnt <= scl_cnt + 8'b1;if (scl_cnt == scl_cnt_max >> 2)beginsda_out <= 0;sda_oen <= 1;state <= ack1;endelse if (scl_cnt == (scl_cnt_max >> 2) + scl_cnt_max)beginstate <= w_addr;sda_oen <= 0;scl_cnt <= 8'b0;bit_cnt <= 4'd7;endelsestate <= ack1;endelsestate <= stop;endw_addr: begin// Write addressif (scl_negedge)beginbit_cnt <= bit_cnt - 4'b1;wen <= save_ctrl[0]; // write operationa <= {a[6:0], sync_sda_1};if (bit_cnt == 4'd0)beginbit_cnt <= 4'd7;state <= ack2;endelsestate <= w_addr;endelsestate <= w_addr;endack2: begin// Acknowledge addressscl_cnt <= scl_cnt + 8'b1;if (scl_cnt == scl_cnt_max >> 2)beginsda_out <= 1'b0;sda_oen <= 1'b1;state <= ack2;endelse if (scl_cnt == (scl_cnt_max >> 2) + scl_cnt_max)beginsda_oen <= 1'b0;scl_cnt <= 8'b0;if (wen == 0) // decide write or readstate <= w_data;elsestate <= r_start;endelsestate <= ack2;endw_data: begin// Write dataif (scl_negedge)begind <= {d[6:0], sync_sda_1};bit_cnt <= bit_cnt - 4'b1;if (bit_cnt == 4'd0)beginbit_cnt <= 4'd7;state <= ack3;endelsestate <= w_data;endelsestate <= w_data;endack3: begin// Acknowledge datascl_cnt <= scl_cnt + 8'b1;if (scl_cnt == scl_cnt_max >> 2)beginsda_out <= 0;sda_oen <= 1'b1;state <= ack3;endelse if (scl_cnt == (scl_cnt_max >> 2) + scl_cnt_max)beginsda_oen <= 1'b0;scl_cnt <= 8'b0;state <= stop;endelsestate <= ack3;endr_start: begin// Read start conditionif (sync_scl_1 && sda_negedge)beginsda_oen <= 1'b0;bit_cnt <= 4'd8;state <= r_ctrl;endelsestate <= r_start;endr_ctrl: begin// Read control wordif (scl_negedge)beginbit_cnt <= bit_cnt - 4'b1;save_ctrl <= {save_ctrl[6:0], sync_sda_1};if (bit_cnt == 4'd0)beginwen <= save_ctrl[0];bit_cnt <= 4'd7;state <= ack4;endelsestate <= r_ctrl;endelsestate <= r_ctrl;endack4: begin// Acknowledge control wordif (save_ctrl[7:1] == slave_addr)beginscl_cnt <= scl_cnt + 8'b1;if (scl_cnt == scl_cnt_max >> 2)beginsda_out <= 0;sda_oen <= 1;state <= ack4;endelse if (scl_cnt == (scl_cnt_max >> 2) + scl_cnt_max)beginsda_oen <= 1'b0;scl_cnt <= 8'b0;if (wen)beginstate <= r_data;sda_oen <= 1'b1;sda_out <= sync_sda_1;endelsestate <= w_data;endelsestate <= ack4;endelsestate <= stop;endr_data: begin// Read dataif (scl_negedge)beginsave_q_data <= q[7:0];bit_cnt <= bit_cnt - 4'b1;sda_out <= save_q_data[7];if (bit_cnt == 4'd0)beginstate <= ack5;bit_cnt <= 4'd7;sda_oen <= 0;endelsebeginstate <= r_data;sda_oen <= 1;save_q_data <= {save_q_data[6:0], 1'b0};endendelsestate <= r_data;endack5: begin// Acknowledge dataif (scl_posedge)beginif (sync_sda_1 == 1)state <= stop;elsestate <= idle;endelsestate <= ack5;endstop: begin// Stop conditionif (sync_scl_1 && sda_posedge)beginstate <= idle;sda_oen <= 1'b0;sda_out <= 1'b1;endelsestate <= stop;enddefault: state <= idle;endcaseendend
endmodule

2.3.1 状态机状态解释

当然可以!以下是优化后的代码中每个状态的作用解释:

reg [3:0] state; // state transform
parameter idle       = 4'd0,w_start   = 4'd1,w_ctrl    = 4'd2,ack1      = 4'd3,w_addr    = 4'd4,ack2      = 4'd5,w_data    = 4'd6,ack3      = 4'd7,r_start   = 4'd8,r_ctrl    = 4'd9,ack4      = 4'd10,r_data    = 4'd11,ack5      = 4'd12,stop      = 4'd13;

状态作用解释

  1. idle (4’d0):
  • 作用: 初始状态,等待复位信号或起始条件。
  • 描述: 在这个状态下,所有信号被初始化,状态机等待复位信号 rstn 或起始条件(sync_scl_1 和 sda_negedge)。
  1. w_start (4’d1):
  • 作用: 等待起始条件。
  • 描述: 在这个状态下,状态机检测起始条件(sync_scl_1 和 sda_negedge)。如果检测到起始条件,状态机进入 w_ctrl 状态。
  1. w_ctrl (4’d2):
  • 作用: 接收控制字。
  • 描述: 在这个状态下,状态机接收控制字(save_ctrl),并将其存储在寄存器中。控制字的接收通过 scl_negedge 信号完成。当接收到完整的控制字后,状态机进入 ack1 状态。
  1. ack1 (4’d3):
  • 作用: 发送 ACK 信号。
  • 描述: 在这个状态下,状态机发送 ACK 信号(sda_out 和 sda_oen)。如果接收到的控制字匹配从设备地址(slave_addr),状态机进入 w_addr 状态。否则,状态机进入 stop 状态。
  1. w_addr (4’d4):
  • 作用: 接收地址。
  • 描述: 在这个状态下,状态机接收地址数据(a),并将其存储在寄存器中。地址的接收通过 scl_negedge 信号完成。当接收到完整的地址后,状态机进入 ack2 状态。
  1. ack2 (4’d5):
  • 作用: 发送 ACK 信号。
  • 描述: 在这个状态下,状态机发送 ACK 信号(sda_out 和 sda_oen)。根据控制字中的写入标志(wen),状态机决定进入 w_data 状态(写入数据)或 r_start 状态(读取数据)。
  1. w_data (4’d6):
  • 作用: 写入数据。
  • 描述: 在这个状态下,状态机接收数据(d),并将其存储在寄存器中。数据的接收通过 scl_negedge 信号完成。当接收到完整的数据后,状态机进入 ack3 状态。
  1. ack3 (4’d7):
  • 作用: 发送 ACK 信号。
  • 描述: 在这个状态下,状态机发送 ACK 信号(sda_out 和 sda_oen)。然后状态机进入 stop 状态。
  1. r_start (4’d8):
  • 作用: 等待读取起始条件。
  • 描述: 在这个状态下,状态机检测读取起始条件(sync_scl_1 和 sda_negedge)。如果检测到起始条件,状态机进入 r_ctrl 状态。
  1. r_ctrl (4’d9):
  • 作用: 接收控制字。
  • 描述: 在这个状态下,状态机接收控制字(save_ctrl),并将其存储在寄存器中。控制字的接收通过 scl_negedge 信号完成。当接收到完整的控制字后,状态机进入 ack4 状态。
  1. ack4 (4’d10):
  • 作用: 发送 ACK 信号。
  • 描述: 在这个状态下,状态机发送 ACK 信号(sda_out 和 sda_oen)。如果接收到的控制字匹配从设备地址(slave_addr),状态机进入 r_data 状态。否则,状态机进入 stop 状态。
  1. r_data (4’d11):
  • 作用: 读取数据。
  • 描述: 在这个状态下,状态机读取数据(q),并将其存储在寄存器中。数据的读取通过 scl_negedge 信号完成。当读取完数据后,状态机进入 ack5 状态。
    13。 ack5 (4’d12):
  • 作用: 发送 ACK 信号。
  • 描述: 在这个状态下,状态机发送 ACK 信号(sda_out 和 sda_oen)。然后状态机进入 idle 状态。
  1. stop (4’d13):
  • 作用: 停止状态。
  • 描述: 在这个状态下,状态机等待停止条件(sync_scl_1 和 sda_posedge)。如果检测到停止条件,状态机进入 idle 状态。

每个状态的作用如下:

  • idle: 初始状态,等待复位或起始条件。
  • w_start: 等待起始条件。
  • w_ctrl: 接收控制字。
  • ack1: 发送 ACK 信号,确认控制字接收。
  • w_addr: 接收地址。
  • ack2: 发送 ACK 信号,确认地址接收。
  • w_data: 写入数据。
  • ack3: 发送 ACK 信号,确认数据写入。
  • r_start: 等待读取起始条件。
  • r_ctrl: 接收控制字。
  • ack4: 发送 ACK 信号,确认控制字接收。
  • r_data: 读取数据。
  • ack5: 发送 ACK 信号,确认数据读取。
  • stop: 停止状态,等待停止条件。

这些状态共同构成了一个完整的 I2C 从设备写入和读取的有限状态机,确保数据的正确传输和接收。

2.4 ram.v

`timescale 1ns/1ps
module ram (clk,rstn,d,a,q,wen
);// Input portsinput clk, rstn;input [7:0] a;  // Address inputinput [7:0] d;  // Data inputinput wen;      // Write enable// Output portsoutput [7:0] q; // Data output// Internal registersreg [7:0] ram [255:0]; // RAM arrayinteger i;             // Loop counterreg [7:0] q;           // Output data register// Always block for RAM operationsalways @(posedge clk or negedge rstn)beginif (!rstn) begin// Initialize RAM on resetfor (i = 0; i <= 255; i = i + 1)ram[i] <= 8'b0;end else beginif (!wen) begin// Write operation: wen = 0ram[a] <= d;end else begin// Read operation: wen = 1q <= ram[a];endendendendmodule

3. 波形展示

在这里插入图片描述

4. 建议

必看
此设计还存在一些问题,后续有时间我会完善的。

在同步的时候我建议还是使用两个寄存器缓冲,而不是使用一个,使用多个更加的稳妥一些,我这个就是使用了较少的寄存器缓冲,所以波形中有问题。(我把这段字打个红色背景)。(是因为在边沿检测的时候无法确认信号是否同步还是异步所以在设计的时候还是使用双寄存器进行消除亚稳态)

5. 资料总结

练习时的一些思路。

https://blog.csdn.net/weixin_46163885/article/details/107170689

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/15191.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

什么是中间件中间件有哪些

什么是中间件&#xff1f; 中间件&#xff08;Middleware&#xff09;是指在客户端和服务器之间的一层软件组件&#xff0c;用于处理请求和响应的过程。 中间件是指介于两个不同系统之间的软件组件&#xff0c;它可以在两个系统之间传递、处理、转换数据&#xff0c;以达到协…

【键盘识别】实例分割

第一步 键盘检测 方案一 canny边缘检测 canny边缘检测检测结果不稳定,容易因为复杂背景或光线变换检测出其他目标。 如图是用canny边缘检测方法标出的检测出的边缘的四个红点。 参考的是这篇文章OpenCV实战之三 | 基于OpenCV实现图像校正_opencv 图像校正-CSDN博客 方案二…

线程上下文-ThreadLocal原理

ThreadLocal主要作用&#xff1a;为每个线程提供独立的变量副本&#xff0c;实现线程间的数据隔离&#xff0c;从而避免多线程环境下的资源共享冲突。 原理 ThreadLocal有个内部类 ThreadLocalMap&#xff0c;顾名思义是个Map结构&#xff1a;key为 ThreadLocal实例&#xff0…

【Python】元组

个人主页&#xff1a;GUIQU. 归属专栏&#xff1a;Python 文章目录 1. 元组的本质与基础概念1.1 不可变序列的意义1.2 元组与数学概念的联系 2. 元组的创建方式详解2.1 标准创建形式2.2 单元素元组的特殊处理2.3 使用 tuple() 函数进行转换 3. 元组的基本操作深入剖析3.1 索引操…

SpringSecurity:授权服务器与客户端应用(入门案例)

文章目录 一、需求概述二、开发授权服务器1、pom依赖2、yml配置3、启动服务端 三、开发客户端应用1、pom依赖2、yml配置3、SecurityConfig4、接口5、测试 一、需求概述 maven需要3.6.0以上版本 二、开发授权服务器 1、pom依赖 <dependency><groupId>org.springfr…

android的Compose 简介

Jetpack Compose 简介 Jetpack Compose 是 Android 官方推出的声明式 UI 工具包&#xff0c;用于替代传统 XML 布局&#xff0c;简化界面开发流程。它基于 Kotlin 语言&#xff0c;通过函数式编程实现高效、灵活的 UI 构建&#xff0c;支持实时预览和更直观的状态管理。 优势…

四次挥手详解

文章目录 一、四次挥手各状态FIN_WAIT_1CLOSE_WAITFIN_WAIT_2LAST_ACKTIME_WAITCLOSE 二、双方同时调用close()&#xff0c;FIN_WAIT_1状态后进入CLOSING状态CLOSING状态 三、TIME_WAIT状态详解(1) TIME_WAIT状态下的2MSL是什么MSL &#xff08;报文最大生存时间&#xff09;为…

LIMO:上海交大的工作 “少即是多” LLM 推理

25年2月来自上海交大、SII 和 GAIR 的论文“LIMO: Less is More for Reasoning”。 一个挑战是在大语言模型&#xff08;LLM&#xff09;中的复杂推理。虽然传统观点认为复杂的推理任务需要大量的训练数据&#xff08;通常超过 100,000 个示例&#xff09;&#xff0c;但本文展…

51单片机之引脚图(详解)

8051单片机引脚分类与功能笔记 1. 电源引脚 VCC&#xff08;第40脚&#xff09;&#xff1a;接入5V电源&#xff0c;为单片机提供工作电压。GND&#xff08;第20脚&#xff09;&#xff1a;接地端&#xff0c;确保电路的电位参考点。 2.时钟引脚 XTAL1&#xff08;第19脚&a…

基于yolov11的阿尔兹海默症严重程度检测系统python源码+onnx模型+评估指标曲线+精美GUI界面

【算法介绍】 基于YOLOv11的阿尔兹海默症严重程度检测系统是一种创新的医疗辅助工具&#xff0c;旨在通过先进的计算机视觉技术提高阿尔兹海默症的早期诊断和病情监测效率。阿尔兹海默症是一种渐进性的神经退行性疾病&#xff0c;通常表现为认知障碍、记忆丧失和语言障碍等症状…

TAPEX:通过神经SQL执行器学习的表格预训练

摘要 近年来&#xff0c;语言模型预训练的进展通过利用大规模非结构化文本数据取得了巨大成功。然而&#xff0c;由于缺乏大规模高质量的表格数据&#xff0c;在结构化表格数据上应用预训练仍然是一个挑战。本文提出了TAPEX&#xff0c;通过在一个合成语料库上学习神经SQL执行…

轻松理解CSS中的float浮动元素

1.float:left&#xff0c;float:right可以让元素脱离原始文档流&#xff0c;也就是所谓的“浮动”&#xff0c;可以理解为元素漂浮在原本所占位置的上空&#xff0c;意思是元素漂浮起来了&#xff0c;不占原始文档流的空间。但是&#xff0c;别的元素可以感知到浮动元素的存在&…

Vue与Konva:解锁Canvas绘图的无限可能

前言 在现代Web开发中&#xff0c;动态、交互式的图形界面已成为提升用户体验的关键要素。Vue.js&#xff0c;作为一款轻量级且高效的前端框架&#xff0c;凭借其响应式数据绑定和组件化开发模式&#xff0c;赢得了众多开发者的青睐。而当Vue.js邂逅Konva.js&#xff0c;两者结…

【Git】tortoisegit使用配置

1. 安装 首先下载小乌龟&#xff0c;下载地址:https://tortoisegit.org/download/, 可以顺便下载语言包&#xff01; 安装时&#xff0c;默认安装就可以&#xff0c;一路next。也可以安装到指定目录中 目前已完成本地安装&#xff0c;接下来就需要与远程仓库建立连接&…

RuoYi-Vue-Oracle的oracle driver驱动配置问题ojdbc8-12.2.0.1.jar的解决

RuoYi-Vue-Oracle的oracle driver驱动配置问题ojdbc8-12.2.0.1.jar的解决 1、报错情况 下载&#xff1a;https://gitcode.com/yangzongzhuan/RuoYi-Vue-Oracle 用idea打开&#xff0c;启动&#xff1a; 日志有报错&#xff1a; 点右侧m图标&#xff0c;maven有以下报误 &…

C++ 设计模式 - 访问者模式

一&#xff1a;概述 访问者模式将作用于对象层次结构的操作封装为一个对象&#xff0c;并使其能够在不修改对象层次结构的情况下定义新的操作。 《设计模式&#xff1a;可复用面向对象软件的基础》一书中的访问者模式因两个原因而具有传奇色彩&#xff1a;一是因为它的复杂性&a…

DeepSeek在FPGA/IC开发中的创新应用与未来潜力

随着人工智能技术的飞速发展&#xff0c;以DeepSeek为代表的大语言模型&#xff08;LLM&#xff09;正在逐步渗透到传统硬件开发领域。在FPGA&#xff08;现场可编程门阵列&#xff09;和IC&#xff08;集成电路&#xff09;开发这一技术密集型行业中&#xff0c;DeepSeek凭借其…

ZU47DR 100G光纤 高性能板卡

简介 2347DR是一款最大可提供8路ADC接收和8路DAC发射通道的高性能板卡。板卡选用高性价比的Xilinx的Zynq UltraScale RFSoC系列中XCZU47DR-FFVE1156作为处理芯片&#xff08;管脚可以兼容XCZU48DR-FFVE1156&#xff0c;主要差别在有无FEC&#xff08;信道纠错编解码&#xff0…

详解SQLAlchemy的函数relationship

在 SQLAlchemy 中&#xff0c;relationship 是一个非常重要的函数&#xff0c;用于定义模型之间的关系。它用于在 ORM 层面上表示数据库表之间的关联关系&#xff08;如 1 对 1、1 对多和多对多&#xff09;。relationship 的主要作用是提供一个高级接口&#xff0c;用于在模型…

【Matlab优化算法-第14期】基于智能优化算法的VMD信号去噪项目实践

基于智能优化算法的VMD信号去噪项目实践 一、前言 在信号处理领域&#xff0c;噪声去除是一个关键问题&#xff0c;尤其是在处理含有高斯白噪声的复杂信号时。变分模态分解&#xff08;VMD&#xff09;作为一种新兴的信号分解方法&#xff0c;因其能够自适应地分解信号而受到…