深度学习——深度学习计算一

深度学习——深度学习计算一

文章目录

  • 前言
  • 一、层和块
    • 1.1. 自定义块
    • 1.2. 顺序块
    • 1.3. 在前向传播函数中执行代码
    • 1.4. 小结
  • 二、参数管理
    • 2.1. 参数访问
      • 2.1.1. 目标参数
      • 2.1.2. 一次性访问所有参数
      • 2.1.3. 从嵌套块收集参数
    • 2.2. 参数初始化
      • 2.2.1. 内置初始化
      • 2.2.2. 自定义初始化
    • 2.3. 参数绑定
  • 总结


前言

本章将深入探索深度学习计算的关键组件, 即模型构建、参数访问与初始化、设计自定义层和块、将模型读写到磁盘, 以及利用GPU实现显著的加速。 这些知识将使我们从深度学习“基础用户”变为“高级用户”。

参考书:
《动手学深度学习》


一、层和块

在深度学习中,层(layer)是构成神经网络的基本组件之一。每一层都包含一组神经元(或称为节点),这些神经元接收输入并输出一些值。不同类型的层可以实现不同的功能,例如全连接层、卷积层、池化层等。

块(block)是由多个层组成的模块化结构。块可以看作是一个更高级的层,它将多个层组合在一起,并通过一些额外的操作(如激活函数、正则化等)来增加模型的灵活性和表达能力。块的设计可以帮助简化模型的结构,提高模型的可读性和可维护性,实现更为复杂的网络功能

在这里插入图片描述

层和块的概念在深度学习中非常重要,它们可以帮助构建复杂的神经网络模型,并提高模型的性能和效果。

在构造自定义块之前,我们先回顾一下多层感知机的代码。
下面的代码生成一个网络,其中包含一个具有256个单元和ReLU激活函数的全连接隐藏层, 然后是一个具有10个隐藏单元且不带激活函数的全连接输出层。

import torch
from d2l import torch as d2l
from torch import nn
net = nn.Sequential(nn.Linear(20,256),nn.ReLU(),nn.Linear(256,10))
X = torch.rand(2,20)
print(net(X))#结果:
tensor([[ 0.0805,  0.0937, -0.0331,  0.1567,  0.0594, -0.3293,  0.1774, -0.0600,-0.0033, -0.3726],[ 0.0451, -0.0064, -0.1280,  0.0454,  0.2185, -0.2862,  0.1780,  0.0198,-0.0341, -0.5214]], grad_fn=<AddmmBackward0>)

在这个例子中,我们通过实例化nn.Sequential来构建我们的模型, 层的执行顺序是作为参数传递的。

1.1. 自定义块

在实现我们自定义块之前,我们简要总结一下每个块必须提供的基本功能:

  1. 将输入数据作为其前向传播函数的参数。
  2. 通过前向传播函数来生成输出。
  3. 计算其输出关于输入的梯度,可通过其反向传播函数进行访问。通常这是自动发生的。
  4. 存储和访问前向传播计算所需的参数。
  5. 根据需要初始化模型参数。
# 下面的MLP类继承了表示块的类
class MLP(nn.Module):# 用模型参数声明层。这里,我们声明两个全连接的层def __init__(self):# 调用MLP的父类Module的构造函数来执行必要的初始化。# 这样,在类实例化时也可以指定其他函数参数,例如模型参数paramssuper().__init__()self.hidden = nn.Linear(20, 256)self.out = nn.Linear(256, 10)  # 输出层# 定义模型的前向传播,即如何根据输入X返回所需的模型输出def forward(self, X):# 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。return self.out(F.relu(self.hidden(X)))net = MLP()
print(net(X))#结果:
tensor([[-0.1863, -0.1673,  0.0547,  0.1255, -0.2258, -0.1138, -0.0232,  0.0543,0.0770,  0.0198],[-0.0964, -0.2234,  0.1306,  0.0934, -0.2134, -0.1488,  0.0052,  0.1475,0.1173,  0.0602]], grad_fn=<AddmmBackward0>)

块的一个主要优点是它的多功能性。 我们可以子类化块以创建层(如全连接层的类)、 整个模型(如上面的MLP类)或具有中等复杂度的各种组件。

1.2. 顺序块

现在我们可以更仔细地看看Sequential类是如何工作的, 回想一下Sequential的设计是为了把其他模块串起来。 为了构建我们自己的简化的MySequential, 我们只需要定义两个关键函数:

  1. 一种将块逐个追加到列表中的函数;
  2. 一种前向传播函数,用于将输入按追加块的顺序传递给块组成的“链条”。
"""
顺序块
"""
#下面的MySequential类提供了与默认Sequential类相同的功能。
class MySequential(nn.Module):def __init__(self,*args):super().__init__()for idx,module in enumerate(args):#这里,module是Module子类的一个实例。我们把它保存在'Module'类的成员# 变量_modules中。_module的类型是OrderedDictself._modules[str(idx)] = moduledef forward(self,X):# OrderedDict保证了按照成员添加的顺序遍历它们for block in self._modules.values():X = block(X)return X#当MySequential的前向传播函数被调用时, 每个添加的块都按照它们被添加的顺序执行。
#现在可以使用我们的MySequential类重新实现多层感知机。net = MySequential(nn.Linear(20,256),nn.ReLU(),nn.Linear(256,10))
#print(net(X))

1.3. 在前向传播函数中执行代码

Sequential类使模型构造变得简单, 允许我们组合新的架构,而不必定义自己的类。 然而,并不是所有的架构都是简单的顺序架构。 当需要更强的灵活性时,我们需要定义自己的块
例如,我们可能希望在前向传播函数中执行Python的控制流。 此外,我们可能希望执行任意的数学运算, 而不是简单地依赖预定义的神经网络层。

class FixedHiddenMLP(nn.Module):def __init__(self):super().__init__()# 不计算梯度的随机权重参数。因此其在训练期间保持不变self.rand_weight = torch.rand((20,20),requires_grad= True)self.linear = nn.Linear(20,20)def forward(self,X):X = self.linear(X)#使用创建的常量参数以及relu和mm函数X = F.relu(torch.mm(X,self.rand_weight)+1)#复用全连接层,这相当于两个全连接层共享参数X = self.linear(X)#控制流while X.abs().sum() > 1:X /= 2return X.sum()

在这个FixedHiddenMLP模型中,我们实现了一个隐藏层,
其权重(self.rand_weight)在实例化时被随机初始化,之后为常量。 这个权重不是一个模型参数,因此它永远不会被反向传播更新。
然后,神经网络将这个固定层的输出通过一个全连接层。

注意,在返回输出之前,模型做了一些不寻常的事情: 它运行了一个while循环,在L1范数大于1的条件下,
将输出向量除以2,直到它满足条件为止。 最后,模型返回了X中所有项的和

我们可以混合搭配各种组合块的方法。 在下面的例子中,我们以一些想到的方法嵌套块:

class NestMLP(nn.Module):def __init__(self):super().__init__()self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),nn.Linear(64, 32), nn.ReLU())self.linear = nn.Linear(32, 16)def forward(self, X):return self.linear(self.net(X))chimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())
print(chimera(X))#结果:
tensor(0.1097, grad_fn=<SumBackward0>)

1.4. 小结

  1. 一个块可以由许多层组成;一个块可以由许多块组成。

  2. 块可以包含代码。

  3. 块负责大量的内部处理,包括参数初始化和反向传播。

  4. 层和块的顺序连接由Sequential块处理。

二、参数管理

在选择了架构并设置了超参数后,我们就进入了训练阶段。 此时,我们的目标是找到使损失函数最小化的模型参数值。 经过训练后,我们将需要使用这些参数来做出未来的预测。

之前的介绍中,我们只依靠深度学习框架来完成训练的工作, 而忽略了操作参数的具体细节。 接下来将介绍以下内容:

  1. 访问参数,用于调试、诊断和可视化;
  2. 参数初始化;
  3. 在不同模型组件间共享参数。

2.1. 参数访问

先看一下具有单隐藏层的多层感知机

import torch
from torch import nnnet = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))
X = torch.rand(size=(2, 4))
print(net(X))#结果:
tensor([[-0.2487],[-0.1757]], grad_fn=<AddmmBackward0>)

当通过Sequential类定义模型时, 我们可以通过索引来访问模型的任意层。 这就像模型是一个列表一样,每层的参数都在其属性中。 如下所示,我们可以检查第二个全连接层的参数。

print(net[2].state_dict())
#结果:
OrderedDict([('weight', tensor([[-0.0454, -0.3495,  0.2659,  0.2088,  0.2453,  0.3455,  0.1744, -0.0094]])), ('bias', tensor([-0.0710]))])

2.1.1. 目标参数

#下面的代码从第二个全连接层(即第三个神经网络层)提取偏置, 提取后返回的是一个参数类实例,并进一步访问该参数的值。print(type(net[2].bias))
print(net[2].bias)
print(net[2].bias.data)#结果:
<class 'torch.nn.parameter.Parameter'>
Parameter containing:
tensor([-0.0710], requires_grad=True)
tensor([-0.0710])

参数是复合的对象,包含值、梯度和额外信息。 这就是我们需要显式参数值的原因。 除了值之外,我们还可以访问每个参数的梯度。 在上面这个网络中,由于我们还没有调用反向传播,所以参数的梯度处于初始状态。

print(net[2].weight.grad == None)
#结果:
True

2.1.2. 一次性访问所有参数

下面,我们将通过演示来比较访问第一个全连接层的参数和访问所有层。

print(*[(name, param.shape) for name, param in net[0].named_parameters()])
print(*[(name, param.shape) for name, param in net.named_parameters()])#结果:
('weight', torch.Size([8, 4])) ('bias', torch.Size([8]))
('0.weight', torch.Size([8, 4])) ('0.bias', torch.Size([8])) ('2.weight', torch.Size([1, 8])) ('2.bias', torch.Size([1]))#这为我们提供了另一种访问网络参数的方式
print(net.state_dict()['2.bias'].data)#结果:
tensor([-0.0710])

2.1.3. 从嵌套块收集参数

我们首先定义一个生成块的函数(可以说是“块工厂”),然后将这些块组合到更大的块中。

def block1():return nn.Sequential(nn.Linear(4, 8), nn.ReLU(),nn.Linear(8, 4), nn.ReLU())def block2():net = nn.Sequential()for i in range(4):# 在这里嵌套net.add_module(f'block {i}', block1())return netrgnet = nn.Sequential(block2(), nn.Linear(4, 1))
print(rgnet(X))
print(rgnet)

结果如下:

在这里插入图片描述

因为层是分层嵌套的,所以我们也可以像通过嵌套列表索引一样访问它们。 下面,我们访问第一个主要的块中、第二个子块的第一层的偏置项。

print(rgnet[0][1][0].bias.data)
#结果:
tensor([ 0.4090, -0.0318,  0.3773,  0.4772,  0.4299, -0.2994,  0.4322,  0.2694])

2.2. 参数初始化

知道了如何访问参数后,现在我们看看如何正确地初始化参数。 深度学习框架提供默认随机初始化, 也允许我们创建自定义初始化方法, 满足我们通过其他规则实现初始化权重。

默认情况下,PyTorch会根据一个范围均匀地初始化权重和偏置矩阵, 这个范围是根据输入和输出维度计算出的。 PyTorch的nn.init模块提供了多种预置初始化方法。

2.2.1. 内置初始化

#内置初始化
#下面的代码将所有权重参数初始化为标准差为0.01的高斯随机变量, 且将偏置参数设置为0。
def init_normal(m):if type(m) == nn.Linear:nn.init.normal_(m.weight,mean= 0,std=0.01)nn.init.zeros_(m.bias)
net.apply(init_normal)
print(net[0].weight.data[0],net[0].bias.data[0])#我们还可以将所有参数初始化为给定的常数,比如初始化为1
def init_constant(m):if type(m) == nn.Linear:nn.init.constant_(m.weight, 1)nn.init.zeros_(m.bias)net.apply(init_constant)
print(net[0].weight.data[0], net[0].bias.data[0])"""
我们还可以对某些块应用不同的初始化方法.
例如,下面我们使用Xavier初始化方法初始化第一个神经网络层, 然后将第三个神经网络层初始化为常量值42。
"""def init_xavier(m):if type(m) == nn.Linear:nn.init.xavier_uniform_(m.weight)
def init_42(m):if type(m) == nn.Linear:nn.init.constant_(m.weight,42)net[0].apply(init_xavier)
net[2].apply(init_42)
print(net[0].weight.data[0])
print(net[2].weight.data)#结果:
tensor([ 0.0060, -0.0043,  0.0009,  0.0124]) tensor(0.)
tensor([1., 1., 1., 1.]) tensor(0.)
tensor([-0.7014, -0.2135,  0.6632,  0.4671])
tensor([[42., 42., 42., 42., 42., 42., 42., 42.]])

2.2.2. 自定义初始化

有时,深度学习框架没有提供我们需要的初始化方法。 在下面的例子中,我们使用以下的分布为任意权重参数 w w w定义初始化方法:

w ∼ { U ( 5 , 10 ) 可能性  1 4 0 可能性  1 2 U ( − 10 , − 5 ) 可能性  1 4 \begin{aligned} w \sim \begin{cases} U(5, 10) & \text{ 可能性 } \frac{1}{4} \\ 0 & \text{ 可能性 } \frac{1}{2} \\ U(-10, -5) & \text{ 可能性 } \frac{1}{4} \end{cases} \end{aligned} w U(5,10)0U(10,5) 可能性 41 可能性 21 可能性 41

def my_init(m):if type(m) == nn.Linear:print("init",*[(name,param.shape) for name,param in m.named_parameters()][0])nn.init.uniform_(m.weight,-10,10) #设置权重的初始值为-10到10之间的均匀分布m.weight.data *= m.weight.data.abs() >=5 #对权重进行截断操作,将小于5的权重置为0。
net.apply(my_init)
print(net[0].weight[:2])#我们始终可以直接设置参数。
net[0].weight.data[:] += 1
net[0].weight.data[0, 0] = 42
print(net[0].weight.data[0])#结果:
init weight torch.Size([8, 4])
init weight torch.Size([1, 8])
tensor([[-6.4263,  5.1428, -0.0000, -8.5624],[-9.4317, -0.0000,  0.0000, -0.0000]], grad_fn=<SliceBackward0>)
tensor([42.0000,  6.1428,  1.0000, -7.5624])

2.3. 参数绑定

有时我们希望在多个层间共享参数: 我们可以定义一个稠密层,然后使用它的参数来设置另一个层的参数。


#我们需要给共享层一个名称,以便可以引用它的参数
shared = nn.Linear(8,8)
net = nn.Sequential(nn.Linear(4,8),nn.ReLU(),shared,nn.ReLU(),shared,nn.ReLU(),nn.Linear(8,1))net(X)
#检查参数是否相同:
print(net[2].weight.data[0] == net[4].weight.data[0])
net[2].weight.data[0,0] = 100
# 确保它们实际上是同一个对象,而不只是有相同的值
print(net[2].weight.data[0] == net[4].weight.data[0])#结果:
tensor([True, True, True, True, True, True, True, True])
tensor([True, True, True, True, True, True, True, True])

这个例子表明第三个和第五个神经网络层的参数是绑定的。 它们不仅值相等,而且由相同的张量表示。

因此,如果我们改变其中一个参数,另一个参数也会改变。 这里有一个问题:当参数绑定时,梯度会发生什么情况?
答案是由于模型参数包含梯度,因此在反向传播期间第二个隐藏层 (即第三个神经网络层)和第三个隐藏层(即第五个神经网络层)的梯度会加在一起。
(尽管梯度加在一起可能看起来有点奇怪,但在参数绑定的情况下,这是正常的行为,并且不会导致错误。)


总结

本章了解了一下层和块的概念,并且也深入了解了一下深度学习中的参数如何管理:参数访问、参数初始化、参数绑定。

物或行或随,或嘘或吹,或强或羸,或培或堕。是以圣人去甚,去泰,去奢

–2023-10-5 进阶篇

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/152165.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

路径总和 III

题目链接 路径总和 III 题目描述 注意点 二叉树的节点个数的范围是 [0,1000]求该二叉树里节点值之和等于 targetSum 的 路径 的数目 解答思路 可根据前缀和的思路解决本题&#xff0c;前缀和表示从根节点开始&#xff0c;往左或往右组成的路径和&#xff0c;统计从根节点开…

Pikachu靶场——跨站请求伪造(CSRF)

文章目录 1. 跨站请求伪造&#xff08;CSRF&#xff09;1.1 CSRF(get)1.2 CSRF(post)1.3 CSRF Token1.4 CSRF漏洞防御 1. 跨站请求伪造&#xff08;CSRF&#xff09; 还可以参考我的另一篇文章&#xff1a;跨站请求伪造(CSRF) 全称Cross-site request forgery&#xff0c;翻译…

爬虫破解:解决CSRF-Token反爬问题 - 上海市发展和改革委员会

标题:爬虫破解:解决CSRF-Token反爬问题 - 上海市发展和改革委员会 网址:https://fgw.sh.gov.cn/fgw-interaction-front/biz/projectApproval/home MD5加密:ca7f5c978b1809d15a4b228198814253 需求文档 采集数据如下所示: 解决反爬思路 这里只提供解决思路,解决反爬,…

Centos7中安装Jenkins教程

1.必须先配置jdk环境&#xff0c;安装jdk参考 Linux配置jdk 2.先卸载Jenkins # rpm卸载 rpm -e jenkins # 检查是否卸载成功 rpm -ql jenkins # 彻底删除残留文件 find / -iname jenkins | xargs -n 1000 rm -rf 3.安装Jenkins 在 /usr/ 目录下创建 jenkins文件夹 mkdir -p je…

【漏洞复现】某 NVR 视频存储管理设备远程命令执行

漏洞描述 NUUO NVR是中国台湾NUUO公司旗下的一款网络视频记录器&#xff0c;该设备存在远程命令执行漏洞&#xff0c;攻击者可利用该漏洞执行任意命令&#xff0c;进而获取服务器的权限。 免责声明 技术文章仅供参考&#xff0c;任何个人和组织使用网络应当遵守宪法法律&am…

迅为龙芯开发板开发板系统烧写-启动系统

上面所有的步骤我们都做完以后&#xff0c;输入命令 sync 确保我们之前的步骤都可以保存到 ssd&#xff0c;接着拔下 U盘&#xff0c;最后输入命令 reboot 重启开发板&#xff0c;如下图所示&#xff1a; 如果启动成功&#xff0c;我们会看到 pmon 从硬盘加载 linux 内核和文件…

python常用库之数据库orm框架之SQLAlchemy

文章目录 python常用库之数据库orm框架之SQLAlchemy一、什么是SQLAlchemySQLAlchemy 使用场景 二、SQLAlchemy使用SQLAlchemy根据模型查询SQLAlchemy SQL 格式化的方式db_session.query和 db_session.execute区别实测demo 总结&#xff1a;让我们留意一下SQLAlchemy 的 lazy lo…

css--踩坑

1. 子元素的宽高不生效问题 设置flex布局后&#xff0c;子元素的宽高不生效问题。 如果希望子元素的宽高生效&#xff0c;解决方法&#xff0c;给子元素添加如下属性&#xff1a; flex-shrink: 0; flex-shrink: 0;2. 横向滚动&#xff08;子元素宽度不固定&#xff09; /* tab…

第2篇 机器学习基础 —(1)机器学习方式及分类、回归

前言&#xff1a;Hello大家好&#xff0c;我是小哥谈。机器学习是一种人工智能的分支&#xff0c;它使用算法和数学模型来使计算机系统能够从经验数据中学习和改进&#xff0c;而无需显式地编程。机器学习的目标是通过从数据中发现模式和规律&#xff0c;从而使计算机能够自动进…

国产开源无头CMS,MyCms v4.7 快捷生成接口开发后台

MyCms 是一款基于 Laravel 开发的开源免费的开源多语言商城 CMS 企业建站系统。 MyCms 基于 Apache2.0 开源协议发布&#xff0c;免费且可商业使用&#xff0c;欢迎持续关注我们。技术交流 QQ 群&#xff1a;887522124 加群请备注来源&#xff1a;如gitee、github、官网等 v4…

【SpringCloud】认识微服务

&#x1f40c;个人主页&#xff1a; &#x1f40c; 叶落闲庭 &#x1f4a8;我的专栏&#xff1a;&#x1f4a8; c语言 数据结构 javaEE 操作系统 Redis 石可破也&#xff0c;而不可夺坚&#xff1b;丹可磨也&#xff0c;而不可夺赤。 认识微服务 一、 服务架构演变1.1 单体架构…

Linux 磁盘管理+实例

目录 一、文件系统 二、添加磁盘 三、查看磁盘信息&#xff08;块设备&#xff09; 四、分区 1、格式 1&#xff09;MBR分区 2&#xff09;GPT分区 2、管理分区 1&#xff09;使用fdisk 2&#xff09;使用gdisk 3&#xff09;使用parted a.交互式 b.非交互式 3、…

2023年中国CEM-3型覆铜板市场供需现状、销售收入及行业趋势分析[图]

CEM-3指覆铜板的一种&#xff0c;以玻纤布半固化片与玻纤粘半固化片层压铜箔达到固化形成的板材&#xff0c;属于复合型基材&#xff0c;CEM-3由于其良好的加工性能主要用于FR-4中厚板的替代&#xff0c;有着良好的发展前景。 随着CEM-3覆铜板品质的不断改进和提高&#xff0c;…

Springboot知识点必知必会(一)

mvc设计模式 MVC设计模式是Model-View-Controller的缩写&#xff0c;它是一种用于设计用户界面的软件设计模式。Spring MVC是Spring框架的一个模块&#xff0c;它提供了一种基于Java的方式来实现MVC设计模式。 以下是Spring MVC中MVC设计模式的组成部分和工作原理&#xff1a; …

什么是智能档案柜?如何使用智能档案柜?

智能档案柜是一种具有智能化功能的文件存储设备&#xff0c;它通过应用现代科技&#xff0c;集成了电子锁、自动化控制、智能管理系统技术&#xff0c;具有自动识别、高效存储、安全可靠等特点&#xff0c;提高档案管理的效率和安全性。适用于企业单位、图书馆等需要储存文件资…

安卓端App页面狂刷问题记录

一、场景 App基于webview混合开发&#xff0c;业务主要为前端h5实现&#xff0c;其中有一个功能为消息中心&#xff0c;当从通知栏点击消息跳转到指定页面时&#xff0c;前端会不停地刷新页面&#xff0c;一遍又一遍地重复同一批请求。 二、问题分析 1、刚开始怀疑是否前端里…

机器学习必修课 - 编码分类变量 encoding categorical variables

1. 数据预处理和数据集分割 import pandas as pd from sklearn.model_selection import train_test_split导入所需的Python库 !git clone https://github.com/JeffereyWu/Housing-prices-data.git下载数据集 # Read the data X pd.read_csv(/content/Housing-prices-data/t…

Mysql 8手动终止某个事务并释放其持有的锁

示范数据表 age具有index普通索引 在mysql数据库里的information_schema.INNODB_TRX表中存储有innodb的所有事务&#xff0c;我们可以查看该表来查看正在进行的事务 现在我开启一个事务&#xff0c;执行第1、2行SQL&#xff0c;启动事务并持有id3的行锁 刷新事务表可以看到…

light client轻节点简介

1. 引言 前序博客&#xff1a; Helios——a16z crypto构建的去中心化以太坊轻节点 去中心化和自我主权对于Web3的未来至关重要&#xff0c;但是这些理想并不总适用于每个项目或应用程序。在非托管钱包和bridges等工具中严格优先考虑安全性而不是便利性的用户&#xff0c;可选…

C++ 01.学习C++的意义-狄泰软件学院

一些历史 UNIX操作系统诞生之初是用汇编语言编写的随着UNIX系统的发展&#xff0c;汇编语言的开发效率成为瓶颈&#xff0c;所以需要一个新的语言替代汇编语言1971年通过对B语言改良&#xff0c;使其能直接产生机器代码&#xff0c;C语言诞生UNIX使用C语言重写&#xff0c;同时…