Nosql redis高可用和持久化

Nosql redis高可用和持久化

  • 1、redis高可用
  • 2、redis持久化
    • 2.1redis持久化
    • 2.2Redis 持久化方法
    • 2.3RDB 持久化
      • 2.3.1RDB持久化工作原理
      • 2.3.2触发条件
      • 2.3.3其他自动触发机制
      • 2.3.4执行流程
      • 2.3.5启动时加载
    • 2.4AOF 持久化
      • 2.4.1AOF持久化原理
      • 2.4.2开启AOF
      • 2.4.3执行流程
      • 2.4.4文件重写的流程
      • 2.4.5启动时加载
    • 2.5RDB和AOF的优缺点
      • 2.5.1RDB持久化
      • 2.5.2AOF持久化
  • 3、Redis 性能管理
    • 3.1查看Redis内存使用
    • 3.2内存碎片率
    • 3.3跟踪内存碎片率
    • 3.4内存使用率
    • 3.5内回收key
  • 4、总结

1、redis高可用

redis高可用和持久化是企业中很重要的技术,当出现单点故障时,必须使用高可用来抵抗风险。数据保证安全性必须做持久化,将数据写入到磁盘中。

redis高可用方式

  • 持久化:持久化是最简单的高可用方法(有时甚至不被归为高可用的手段),主要作用是数据备份,即将数据存储在硬盘,保证数据不会因进程退出而丢失。
  • 主从复制:主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简  单的故障恢复。缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。
  • 哨兵:在主从复制的基础上,哨兵实现了自动化的故障恢复。缺陷:写操作无法负载均衡;存储能力受到单机的限制。
  • Cluster集群:通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。

2、redis持久化

2.1redis持久化

持久化的功能:Redis是内存数据库,数据都是存储在内存中,为了避免服务器断电等原因导致Redis进程异常退出后数据的永久丢失,需要定期将Redis中的数据以某种形式(数据或命令)从内存保存到硬盘;当下次Redis重启时,利用持久化文件实现数据恢复。除此之外,为了进行灾难备份,可以将持久化文件拷贝到一个远程位置。

2.2Redis 持久化方法

  • RDB 持久化:原理是将 Reids在内存中的数据库记录定时保存到磁盘上。
  • AOF 持久化(append only file):原理是将 Reids 的操作日志以追加的方式写入文件,类似于MySQL的binlog。

由于AOF持久化的实时性更好,即当进程意外退出时丢失的数据更少,因此AOF是目前主流的持久化方式,不过RDB持久化仍然有其用武之地。

2.3RDB 持久化

2.3.1RDB持久化工作原理

RDB持久化是指在指定的时间间隔内将内存中当前进程中的数据生成快照保存到硬盘(因此也称作快照持久化),用二进制压缩存储,保存的文件后缀是rdb;当Redis重新启动时,可以读取快照文件恢复数据。

2.3.2触发条件

RDB持久化的触发分为手动触发和自动触发两种

  • 手动触发

save命令和bgsave命令都可以生成RDB文件。

1、save命令会阻塞Redis服务器进程,直到RDB文件创建完毕为止,在Redis服务器阻塞期间,服务器不能处理任何命令请求。
2、bgsave命令会创建一个子进程,由子进程来负责创建RDB文件,父进程(即Redis主进程)则继续处理请求。
3、bgsave命令执行过程中,只有fork子进程时会阻塞服务器,而对于save命令,整个过程都会阻塞服务器,因此save已基本被废弃,线上环境要杜绝save的使用。

  • 自动触发

在自动触发RDB持久化时,Redis也会选择bgsave而不是save来进行持久化。

save m n
自动触发最常见的情况是在配置文件中通过save m n,指定当m秒内发生n次变化时,会触发bgsave。

vim /etc/redis/6379.conf
--219行--以下三个save条件满足任意一个时,都会引起bgsave的调用
save 900 1 :当时间到900秒时,如果redis数据发生了至少1次变化,则执行bgsave
save 300 10 :当时间到300秒时,如果redis数据发生了至少10次变化,则执行bgsave
save 60 10000 :当时间到60秒时,如果redis数据发生了至少10000次变化,则执行bgsave
--254行--指定RDB文件名
dbfilename dump.rdb
--264行--指定RDB文件和AOF文件所在目录
dir /var/lib/redis/6379
--242行--是否开启RDB文件压缩
rdbcompression yes

2.3.3其他自动触发机制

除了save m n 以外,还有一些其他情况会触发bgsave:

  • 在主从复制场景下,如果从节点执行全量复制操作,则主节点会执行bgsave命令,并将rdb文件发送给从节点。
  • 执行shutdown命令时,自动执行rdb持久化。

2.3.4执行流程

(1)Redis父进程首先判断:当前是否在执行save,或bgsave/bgrewriteaof的子进程,如果在执行则bgsave命令直接返回。 bgsave/bgrewriteaof的子进程不能同时执行,主要是基于性能方面的考虑:两个并发的子进程同时执行大量的磁盘写操作,可能引起严重的性能问题。
(2)父进程执行fork操作创建子进程,这个过程中父进程是阻塞的,Redis不能执行来自客户端的任何命令
(3)父进程fork后,bgsave命令返回”Background saving started”信息并不再阻塞父进程,并可以响应其他命令
(4)子进程创建RDB文件,根据父进程内存快照生成临时快照文件,完成后对原有文件进行原子替换
(5)子进程发送信号给父进程表示完成,父进程更新统计信息
在这里插入图片描述

2.3.5启动时加载

RDB文件的载入工作是在服务器启动时自动执行的,并没有专门的命令。但是由于AOF的优先级更高,因此当AOF开启时,Redis会优先载入 AOF文件来恢复数据;只有当AOF关闭时,才会在Redis服务器启动时检测RDB文件,并自动载入。服务器载入RDB文件期间处于阻塞状态,直到载入完成为止。
Redis载入RDB文件时,会对RDB文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。

2.4AOF 持久化

2.4.1AOF持久化原理

RDB持久化是将进程数据写入文件,而AOF持久化,则是将Redis执行的每次写、删除命令记录到单独的日志文件中,查询操作不会记录; 当Redis重启时再次执行AOF文件中的命令来恢复数据。
与RDB相比,AOF的实时性更好,因此已成为主流的持久化方案。

2.4.2开启AOF

//开启AOF
Redis服务器默认开启RDB,关闭AOF;要开启AOF,需要在配置文件中配置:
vim /etc/redis/6379.conf
--700行--修改,开启AOF
appendonly yes
--704行--指定AOF文件名称
appendfilename "appendonly.aof"
--796行--是否忽略最后一条可能存在问题的指令
aof-load-truncated yes<br>启动redis<br>/etc/init.d/redis_6379 restart

2.4.3执行流程

由于需要记录Redis的每条写命令,因此AOF不需要触发,下面介绍AOF的执行流程。
AOF的执行流程包括:

  • 命令追加(append):将Redis的写命令追加到缓冲区aof_buf;
  • 文件写入(write)和文件同步(sync):根据不同的同步策略将aof_buf中的内容同步到硬盘;
  • 文件重写(rewrite):定期重写AOF文件,达到压缩的目的。

(1)命令追加(append)
Redis先将写命令追加到缓冲区,而不是直接写入文件,主要是为了避免每次有写命令都直接写入硬盘,导致硬盘IO成为Redis负载的瓶颈。
命令追加的格式是Redis命令请求的协议格式,它是一种纯文本格式,具有兼容性好、可读性强、容易处理、操作简单避免二次开销等优点。在AOF文件中,除了用于指定数据库的select命令(如select 0为选中0号数据库)是由Redis添加的,其他都是客户端发送来的写命令。
(2)文件写入(write)和文件同步(sync)
Redis提供了多种AOF缓存区的同步文件策略,策略涉及到操作系统的write函数和fsync函数,说明如下:
为了提高文件写入效率,在现代操作系统中,当用户调用write函数将数据写入文件时,操作系统通常会将数据暂存到一个内存缓冲区里,当缓冲区被填满或超过了指定时限后,才真正将缓冲区的数据写入到硬盘里。这样的操作虽然提高了效率,但也带来了安全问题:如果计算机停机,内存缓冲区中的数据会丢失;因此系统同时提供了fsync、fdatasync等同步函数,可以强制操作系统立刻将缓冲区中的数据写入到硬盘里,从而确保数据的安全性。

AOF缓存区的同步文件策略存在三种同步方式,它们分别是:
vim /etc/redis/6379.conf
--729--
appendfsync always: 命令写入aof_buf后立即调用系统fsync操作同步到AOF文件,fsync完成后线程返回。这种情况下,每次有写命令都要同步到AOF文件,硬盘IO成为性能瓶颈,Redis只能支持大约几百TPS写入,严重降低了Redis的性能;即便是使用固态硬盘(SSD),每秒大约也只能处理几万个命令,而且会大大降低SSD的寿命。
appendfsync no: 命令写入aof_buf后调用系统write操作,不对AOF文件做fsync同步;同步由操作系统负责,通常同步周期为30秒。这种情况下,文件同步的时间不可控,且缓冲区中堆积的数据会很多,数据安全性无法保证。
appendfsync everysec: 命令写入aof_buf后调用系统write操作,write完成后线程返回;fsync同步文件操作由专门的线程每秒调用一次。everysec是前述两种策略的折中,是性能和数据安全性的平衡,因此是Redis的默认配置,也是我们推荐的配置。

(3)文件重写(rewrite)
随着时间流逝,Redis服务器执行的写命令越来越多,AOF文件也会越来越大;过大的AOF文件不仅会影响服务器的正常运行,也会导致数据恢复需要的时间过长。
文件重写是指定期重写AOF文件,减小AOF文件的体积。需要注意的是,AOF重写是把Redis进程内的数据转化为写命令,同步到新的AOF文件;不会对旧的AOF文件进行任何读取、写入操作!
关于文件重写需要注意的另一点是:对于AOF持久化来说,文件重写虽然是强烈推荐的,但并不是必须的;即使没有文件重写,数据也可以被持久化并在Redis启动的时候导入;因此在一些现实中,会关闭自动的文件重写,然后通过定时任务在每天的某一时刻定时执行。

#文件重写之所以能够压缩AOF文件,原因在于:
●过期的数据不再写入文件
●无效的命令不再写入文件:如有些数据被重复设值(set mykey v1, set mykey v2)、有些数据被删除了(set myset v1, del myset)等。
●多条命令可以合并为一个:如sadd myset v1, sadd myset v2, sadd myset v3可以合并为sadd myset v1 v2 v3。

通过上述内容可以看出,由于重写后AOF执行的命令减少了,文件重写既可以减少文件占用的空间,也可以加快恢复速度。
#文件重写的触发,分为手动触发和自动触发:
●手动触发:直接调用bgrewriteaof命令,该命令的执行与bgsave有些类似:都是fork子进程进行具体的工作,且都只有在fork时阻塞。
●自动触发:通过设置auto-aof-rewrite-min-size选项和auto-aof-rewrite-percentage选项来自动执行BGREWRITEAOF。
只有当auto-aof-rewrite-min-size和auto-aof-rewrite-percentage两个选项同时满足时,才会自动触发AOF重写,即bgrewriteaof操作。

vim /etc/redis/6379.conf
--729--
auto-aof-rewrite-percentage 100    :当前AOF文件大小(即aof_current_size)是上次日志重写时AOF文件大小(aof_base_size)两倍时,发生BGREWRITEAOF操作
auto-aof-rewrite-min-size 64mb :当前AOF文件执行BGREWRITEAOF命令的最小值,避免刚开始启动Reids时由于文件尺寸较小导致频繁的BGREWRITEAOF <br><br>关于文件重写的流程,有两点需要特别注意:(1)重写由父进程fork子进程进行;(2)重写期间Redis执行的写命令,需要追加到新的AOF文件中,为此Redis引入了aof_rewrite_buf缓存。

2.4.4文件重写的流程

(1)Redis父进程首先判断当前是否存在正在执行bgsave/bgrewriteaof的子进程,如果存在则bgrewriteaof命令直接返回,如果存在bgsave命令则等bgsave执行完成后再执行。
(2)父进程执行fork操作创建子进程,这个过程中父进程是阻塞的。
(3.1)父进程fork后,bgrewriteaof命令返回”Background append only file rewrite started”信息并不再阻塞父进程,
并可以响应其他命令。Redis的所有写命令依然写入AOF缓冲区,并根据appendfsync策略同步到硬盘,保证原有AOF机制的正确。
(3.2)由于fork操作使用写时复制技术,子进程只能共享fork操作时的内存数据。由于父进程依然在响应命令,因此Redis使用AOF重写缓冲区(aof_rewrite_buf)保存这部分数据,防止新AOF文件生成期间丢失这部分数据。也就是说,bgrewriteaof执行期间,Redis的写命令同时追加到aof_buf和aof_rewirte_buf两个缓冲区。
(4)子进程根据内存快照,按照命令合并规则写入到新的AOF文件。
(5.1)子进程写完新的AOF文件后,向父进程发信号,父进程更新统计信息,具体可以通过info persistence查看。
(5.2)父进程把AOF重写缓冲区的数据写入到新的AOF文件,这样就保证了新AOF文件所保存的数据库状态和服务器当前状态一致。
(5.3)使用新的AOF文件替换老文件,完成AOF重写。

2.4.5启动时加载

当AOF开启时,Redis启动时会优先载入AOF文件来恢复数据;只有当AOF关闭时,才会载入RDB文件恢复数据。
当AOF开启,但AOF文件不存在时,即使RDB文件存在也不会加载。
Redis载入AOF文件时,会对AOF文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。但如果是AOF文件结尾不完整(机器突然宕机等容易导致文件尾部不完整),且aof-load-truncated参数开启,则日志中会输出警告,Redis忽略掉AOF文件的尾部,启动成功。aof-load-truncated参数默认是开启的。

2.5RDB和AOF的优缺点

2.5.1RDB持久化

优点:RDB文件紧凑,体积小,网络传输快,适合全量复制;恢复速度比AOF快很多。当然,与AOF相比,RDB最重要的优点之一是对性能的影响相对较小。

缺点:RDB文件的致命缺点在于其数据快照的持久化方式决定了必然做不到实时持久化,而在数据越来越重要的今天,数据的大量丢失很多时候是无法接受的,因此AOF持  久化成为主流。此外,RDB文件需要满足特定格式,兼容性差(如老版本的Redis不兼容新版本的RDB文件)。
对于RDB持久化,一方面是bgsave在进行fork操作时Redis主进程会阻塞,另一方面,子进程向硬盘写数据也会带来IO压力。

2.5.2AOF持久化

与RDB持久化相对应,AOF的优点在于支持秒级持久化、兼容性好,缺点是文件大、恢复速度慢、对性能影响大。

对于AOF持久化,向硬盘写数据的频率大大提高(everysec策略下为秒级),IO压力更大,甚至可能造成AOF追加阻塞问题。AOF文件的重写与RDB的bgsave类似,会有fork时的阻塞和子进程的IO压力问题。相对来说,由于AOF向硬盘中写数据的频率更高,因此对 Redis主进程性能的影响会更大。

3、Redis 性能管理

3.1查看Redis内存使用

info memory

在这里插入图片描述

3.2内存碎片率

操作系统分配的内存值used_ memory_ rss除以Redis使用的内存值used_memory计算得出内存碎片是由操作系统低效的分配/回收物理内存导致的 (不连续的物理内存分配)

3.3跟踪内存碎片率

跟踪内存碎片率对理解Redis实例的资源性能是非常重要的:

  • 内存碎片率稍大于1是合理的,这个值表示内存碎片率比较低
  • 内存碎片率超过1.5,说明Redis消耗了实际需要物理内存的150号, 其中50号是内存碎片率。需要在redis-cli工具.上输入shutdown save命令,并重启Redis 服务器。
  • 内存碎片率低于1的,说明Redis内存分配超出了物理内存,操作系统正在进行内存交换。需要增加可用物理内存或减少Redis内存占用。

3.4内存使用率

redis实例的内存使用率超过可用最大内存,操作系统将开始进行内存与swap空间交换。

避免内存交换发生的方法:

  • 针对缓存数据大小选择安装Redis 实例
  • 尽可能的使用Hash数据结构存储
  • 设置key的过期时间

3.5内回收key

保证合理分配redis有限的内存资源。

当达到设置的最大阀值时,需选择一种key的回收策略,默认情况下回收策略是禁止删除。 配置文件中修改maxmemory- policy属性值:

vim /etc/redis/6379.conf--598--
maxmemory-policy noenviction  //配置文件中修改max-memory-policy属性值
volatile-lru 		:使用LRU算法从已设置过期时间的数据集合中淘汰数据
volatile-ttl 		:从已设置过期时间的数据集合中挑选即将过期的数据淘汰
volatile-random 	:从已设置过期时间的数据集合中随机挑选数据淘汰
allkeys-lru 		:使用LRU算法从所有数据集合中淘汰数据
allkeys-random 	    :从数据集合中任意选择数据淘汰
noenviction 		:禁止淘汰数据

在这里插入图片描述

4、总结

Redis高可用主要包括主从复制和Redis集群两种方式,通过将数据分散到多个节点实现数据的备份和读写分离,提高了系统可用性和性能。选用适合自身业务场景的高可用方案,可以保证Redis数据的可靠性和稳定性。Redis持久化主要包括RDB和AOF两种方式,RDB将Redis数据以快照的形式保存到硬盘上,适用于数据量较大且需要定期备份的场景。AOF将Redis的操作记录写入到文件中,可以实现更加精确的数据恢复。选用适合自身业务场景的持久化方案,可以保证Redis数据的可靠性和稳定性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/152287.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker之Dockerfile搭建lnmp

目录 一、搭建nginx ​编辑 二、搭建Mysql&#xff08;简略版&#xff09; 三、搭建PHP 五、补充 主机名ip地址主要软件mysql2192.168.11.22Docker 代码示例 systemctl stop firewalld systemctl disable firewalld setenforce 0docker network create --subnet172.18.…

springboot家政服务管理平台springboot29

大家好✌&#xff01;我是CZ淡陌。一名专注以理论为基础实战为主的技术博主&#xff0c;将再这里为大家分享优质的实战项目&#xff0c;本人在Java毕业设计领域有多年的经验&#xff0c;陆续会更新更多优质的Java实战项目&#xff0c;希望你能有所收获&#xff0c;少走一些弯路…

Qt开发学习笔记02

将窗口设为提示框 Qt::ToolTipQt 数据库连接池 #ifndef SQLITE_H #define SQLITE_H#include <QSqlDatabase> #include <QSqlError> #include <QSqlQuery> #include <QQueue> #include <QMutex> #include <QDebug> #include "../con…

深入了解 RabbitMQ:高性能消息中间件

一、什么是消息队列 消息队列(Message Queue)是在消息的传输过程中保存消息的容器、 消息指的是两个应用间传递的数据。数据的类型有很多种形式 二、应用场景 主要有三个作用异步处理 场景说明: 用户注册后&#xff0c;需要发注册邮件和注册短信,传统的做法串行的应用解耦 场…

竞赛选题 深度学习 opencv python 公式识别(图像识别 机器视觉)

文章目录 0 前言1 课题说明2 效果展示3 具体实现4 关键代码实现5 算法综合效果6 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 基于深度学习的数学公式识别算法实现 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学…

anaconda安装及配置+pytorch安装与配置(自用笔记)

anaconda安装及配置 1、anaconda官网下载安装包 下载好后进行安装 2、anaconda安装地址(记住安装路径)&#xff1a; 3、配置环境变量 打开anaconda prompt: 输入命令conda list: 可以看到安装好的很多包&#xff01; 至此anaconda配置完成。 PyTorch的安装与配置 使用con…

成功解决@Async注解不生效的问题,异步任务处理问题

首先&#xff0c;有这样一个异步监听方法 然后配置好了异步线程池 package com.fdw.study.config;import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.ComponentScan; import org.springframework.context.annotation.Conf…

机器学习笔记 - 两个静态手势识别的简单示例

一、关于手势识别 手势识别方法通常分为两类:静态或动态。 静态手势是那些只需要在分类器的输入处处理单个图像的手势,这种方法的优点是计算成本较低。动态手势需要处理图像序列和更复杂的手势识别方法。 进一步了解可以参考下面链接。 静态手势识别和动态手势识别的区别和技…

【ARM CoreLink 系列 5 -- CI-700 控制器介绍 】

文章目录 1.1 什么是 CI-700?1.1.1 关于 CI-7001.1.2 CI-700 特点1.2 全局配置参数1.2.1 寻址能力1.3 组件和配置1.3.1 CI-700 互联的结构1.3.2 Crosspoint(XP)1.3.3 外部接口1.4 组件(Components)1.4.1 RN-I & RN-D1.4.2 HN-F(Fully coherent Home Node)1.4.3 SBSX(AM…

Redis作为缓存,mysql的数据如何与redis进行同步?

Redis作为缓存&#xff0c;mysql的数据如何与redis进行同步&#xff1f; 一定要设置前提&#xff0c;先介绍业务背景 延时双删 双写一致性:当修改了数据库的数据也要同时更新缓存的数据&#xff0c;缓存和数据库的数据要保持一致 读操作:缓存命中&#xff0c;直接返回;缓存未…

招投标系统简介 企业电子招投标采购系统源码之电子招投标系统 —降低企业采购成本

功能描述 1、门户管理&#xff1a;所有用户可在门户页面查看所有的公告信息及相关的通知信息。主要板块包含&#xff1a;招标公告、非招标公告、系统通知、政策法规。 2、立项管理&#xff1a;企业用户可对需要采购的项目进行立项申请&#xff0c;并提交审批&#xff0c;查看所…

electron之进程间通信

Electron进程间通信 使用electron编写程序时经常遇到下面这种场景&#xff1a; 当用户点击一个按钮时&#xff0c;需要将页面输入的信息保存到本地电脑上&#xff1b; 或者是点击菜单时&#xff0c;需要页面窗口做出响应。 用户点击的按钮和窗口展示的内容是运行在渲染进程中&…

超好用的IDEA插件推荐!

大家好&#xff0c;Apipost 最新推出IDEA插件V2版本&#xff01;V2版本主要是Apipost 符合更多用户的需求而推出&#xff0c;支持在插件中获取 token、支持代码完成后在插件中进行 API调试 &#xff0c;同时也保留了1.0版本部分功能如上传选择目录功能等。 V1版本还会继续保留…

湖南互联网医院|湖南互联网医院牌照办理流程及材料

互联网医牌照&#xff0c;一个让医疗行业焕发数字化新生的通行证。随着时代的进步和技术的发展&#xff0c;互联网已经深入各个行业&#xff0c;医疗领域也不例外。而互联网医牌照的办理流程、内容以及所需材料&#xff0c;则是诸多医疗机构所关注的核心内容。 第一种是实体医…

nssm nginx window 部署和开机启动服务

部署 去到Nginx官网&#xff1a;nginx news &#xff0c;然后点击“download” 在nginx的配置文件是conf目录下的nginx.conf nginx.exe http://localhost 在cmd命令窗口里面输入nginx命令(快速停止nginx) &#xff1a; nginx -s stop 或者使用(完整有序的停止nginx)命…

语义分割笔记(三):通过opencv对mask图片来画分割对象的外接椭圆

文章目录 mask图像介绍步骤代码 mask图像介绍 根据 mask 图像来画分割对象的外接椭圆是一种常见的图像分割任务。Mask 图像通常是一个二值图像&#xff0c;其中包含了感兴趣对象的像素。通常情况下&#xff0c;白色像素表示对象&#xff0c;黑色像素表示背景。 步骤 以下是一…

【uniapp】自定义导航栏时,设置安全距离,适配不同机型

1、在pages.json中&#xff0c;给对应的页面设置自定义导航栏样式 {"path": "pages/index/index","style": {"navigationStyle": "custom","navigationBarTextStyle": "white","navigationBarTitl…

【已解决】Operation timed out 问题

概述 今天遇到了这样一个有点奇葩的问题&#xff0c;再阿里云服务器上部署了Mysql服务&#xff0c;再使用NaviCat的过程中链接不上&#xff0c;connect to address IP地址: Operation timed out&#xff0c;最后是服务器防火墙的问题。 查看Mysql服务/端口 1.查看Mysql是否启…

【linux进程(三)】进程有哪些状态?--Linux下常见的三种进程状态

&#x1f493;博主CSDN主页:杭电码农-NEO&#x1f493;   ⏩专栏分类:Linux从入门到精通⏪   &#x1f69a;代码仓库:NEO的学习日记&#x1f69a;   &#x1f339;关注我&#x1faf5;带你学更多操作系统知识   &#x1f51d;&#x1f51d; Linux进程 1. 前言2. 操作系统…

Excel·VBA使用ADO读取工作簿工作表数据

目录 查询遍历写入数组查询整体写入数组查询工作簿所有工作表名称查询工作簿所有工作表数据 不打开工作簿读取数据&#xff0c;以下举例都为《ExcelVBA合并工作簿》中 7&#xff0c;合并子文件夹同名工作簿中同名工作表&#xff0c;纵向汇总数据所举例的工作簿&#xff0c;使用…