分类预测 | MATLAB实现KOA-CNN-LSTM开普勒算法优化卷积长短期记忆神经网络数据分类预测

分类预测 | MATLAB实现KOA-CNN-LSTM开普勒算法优化卷积长短期记忆神经网络数据分类预测

目录

    • 分类预测 | MATLAB实现KOA-CNN-LSTM开普勒算法优化卷积长短期记忆神经网络数据分类预测
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.MATLAB实现KOA-CNN-LSTM开普勒算法优化卷积长短期记忆神经网络数据分类预测,多特征输入模型,运行环境Matlab2020b及以上;
2.基于开普勒算法(KOA)优化卷积长短期记忆神经网络(CNN-LSTM)分类预测。
2023年新算法,KOA-CNN-LSTM开普勒优化卷积长短期记忆神经网络的数据分类预测,MATLAB程序,多变量特征输入,优化了学习率、卷积核大小及隐藏层单元个数等,方便增加维度优化自它参数。
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。程序语言为matlab,程序可出分类效果图,迭代图,混淆矩阵图。
4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行。
5.输出指标包括优化参数、精确度、召回率、精确率、F1分数。

程序设计

  • 完整程序和数据获取方式,私信博主回复MATLAB实现KOA-CNN-LSTM开普勒算法优化卷积长短期记忆神经网络数据分类预测
[Order] = sort(PL_Fit);  %% 对当前种群中的解的适应度值进行排序%% 函数评估t时的最差适应度值worstFitness = Order(SearchAgents_no);                  %% Eq.(11)M = M0 * (exp(-lambda * (t / Tmax)));                   %% Eq.(12)%% 计算表示太阳与第i个解之间的欧几里得距离Rfor i = 1:SearchAgents_noR(i) = 0;for j = 1:dimR(i) = R(i) + (Sun_Pos(j) - Positions(i, j))^2;   %% Eq.(7)endR(i) = sqrt(R(i));end%% 太阳和对象i在时间t的质量计算如下:for i = 1:SearchAgents_nosum = 0;for k = 1:SearchAgents_nosum = sum + (PL_Fit(k) - worstFitness);endMS(i) = rand * (Sun_Score - worstFitness) / (sum);   %% Eq.(8)m(i) = (PL_Fit(i) - worstFitness) / (sum);           %% Eq.(9)end%%2步:定义引力(F)% 计算太阳和第i个行星的引力,根据普遍的引力定律:for i = 1:SearchAgents_noRnorm(i) = (R(i) - min(R)) / (max(R) - min(R));      %% 归一化的R(Eq.(24)MSnorm(i) = (MS(i) - min(MS)) / (max(MS) - min(MS)); %% 归一化的MSMnorm(i) = (m(i) - min(m)) / (max(m) - min(m));      %% 归一化的mFg(i) = orbital(i) * M * ((MSnorm(i) * Mnorm(i)) / (Rnorm(i) * Rnorm(i) + eps)) + (rand); %% Eq.(6)end
% a1表示第i个解在时间t的椭圆轨道的半长轴,
for i = 1:SearchAgents_noa1(i) = rand * (T(i)^2 * (M * (MS(i) + m(i)) / (4 * pi * pi)))^(1/3); %% Eq.(23)
endfor i = 1:SearchAgents_no
% a2是逐渐从-1-2的循环控制参数
a2 = -1 - 1 * (rem(t, Tmax / Tc) / (Tmax / Tc)); %% Eq.(29)% ξ是从1-2的线性减少因子
n = (a2 - 1) * rand + 1;    %% Eq.(28)
a = randi(SearchAgents_no); %% 随机选择的解的索引
b = randi(SearchAgents_no); %% 随机选择的解的索引
rd = rand(1, dim);          %% 按照正态分布生成的向量
r = rand;                   %% r1是[0,1]范围内的随机数%% 随机分配的二进制向量
U1 = rd < r;                %% Eq.(21)
O_P = Positions(i, :);      %% 存储第i个解的当前位置%%6步:更新与太阳的距离(第345在后面)
if rand < rand% h是一个自适应因子,用于控制时间t时太阳与当前行星之间的距离h = (1 / (exp(n * randn))); %% Eq.(27)% 基于三个解的平均向量:当前解、迄今为止的最优解和随机选择的解Xm = (Positions(b, :) + Sun_Pos + Positions(i, :)) / 3.0;Positions(i, :) = Positions(i, :) .* U1 + (Xm + h .* (Xm - Positions(a, :))) .* (1 - U1); %% Eq.(26)
else

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/153388.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

精品Python语言django基于爬虫的新闻资讯分析系统的设计与实现

《[含文档PPT源码等]精品Python项目django基于爬虫的新闻资讯分析系统的设计与实现》该项目含有源码、文档、PPT、配套开发软件、软件安装教程、项目发布教程等&#xff01; 软件开发环境及开发工具&#xff1a; 开发语言&#xff1a;python 使用框架&#xff1a;Django 前…

代码理解技术应用实践介绍

作者 | CQT&星云团队 一、前言 代码理解作为软件知识图谱重要的技术之一&#xff0c;可以为构建、测试、定位、代码解释等提供基础的技术和数据保障&#xff0c;也是持续集成的起点&#xff0c;只有理解了代码才能有目的性的进行有效构建。代码理解对于软件开发的成功和维…

Linux 部署 MinIO 分布式对象存储 配置为 typora 图床

前言 MinIO 是一款高性能的对象存储系统&#xff0c;它可以用于大规模的 AI/ML、数据湖和数据库工作负载。它的 API 与Amazon S3 云存储服务完全兼容&#xff0c;可以在任何云或本地基础设施上运行。MinIO 是开源软件&#xff0c;也提供商业许可和支持 MinIO 的特点有&#x…

WPS/word 表格跨行如何续表、和表的名称

1&#xff1a;具体操作&#xff1a; 将光标定位在跨页部分的第一行任意位置&#xff0c;按下快捷键ctrlshiftenter&#xff0c;就可以在跨页的表格上方插入空行&#xff08;在空行可以写&#xff0c;表1-3 xxxx&#xff08;续&#xff09;&#xff09; 在空行中输入…

vue cli和vite区别

1.Vue CLI脚手架 什么是Vue脚手架&#xff1f; 在真实开发中我们不可能每一个项目从头来完成所有的webpack配置&#xff0c;这样显示开发的效率会大大的降低&#xff1b;所以在真实开发中&#xff0c;我们通常会使用脚手架来创建一个项目&#xff0c;Vue的项目我们使用的就是…

苍穹外卖项目

1. 苍穹外卖项目介绍 1.1 项目介绍 定位&#xff1a;专门为餐饮企业&#xff08;餐厅、饭店&#xff09;定制的一款软件产品 项目架构&#xff1a;体现项目中的业务功能模块 1.2 产品原型 产品原型&#xff1a;用于展示项目的业务功能&#xff0c;一般由产品经理进行设计 …

安全与隐私:直播购物App开发中的重要考虑因素

随着直播购物App的崭露头角&#xff0c;开发者需要特别关注安全性和隐私问题。本文将介绍在直播购物App开发中的一些重要安全和隐私考虑因素&#xff0c;并提供相关的代码示例。 1. 数据加密 在直播购物App中&#xff0c;用户的个人信息和支付信息是极为敏感的数据。为了保护…

忘记压缩包密码?解决方法一键找回,省时又便捷!

使用在线rar/zip解密工具&#xff0c;找回rar/zip密码并解密压缩包的方法非常简单。具体步骤如下&#xff1a;首先&#xff0c;在百度上搜索“密码帝官网”&#xff0c;这是一个专业的解密服务网站。然后&#xff0c;点击搜索结果中的链接&#xff0c;进入官网首页。在页面上方…

Netty(四)NIO-优化与源码

Netty优化与源码 1. 优化 1.1 扩展序列化算法 序列化&#xff0c;反序列化主要用于消息正文的转换。 序列化&#xff1a;将java对象转为要传输对象(byte[]或json&#xff0c;最终都是byte[]) 反序列化&#xff1a;将正文还原成java对象。 //java自带的序列化 // 反序列化 b…

【Java】微服务——Feign远程调用

目录 1.Feign替代RestTemplate1&#xff09;引入依赖2&#xff09;添加注解3&#xff09;编写Feign的客户端4&#xff09;测试5&#xff09;总结 2.自定义配置2.1.配置文件方式2.2.Java代码方式 3.Feign使用优化4.最佳实践4.1.继承方式4.2.抽取方式4.3.实现基于抽取的最佳实践1…

麻省理工学院与Meta AI共同开发StreamingLLM框架,实现语言模型无限处理长度

&#x1f989; AI新闻 &#x1f680; 麻省理工学院与Meta AI共同开发StreamingLLM框架&#xff0c;实现语言模型无限处理长度 摘要&#xff1a;麻省理工学院与Meta AI的研究人员联合研发了一款名为StreamingLLM的框架&#xff0c;解决了大语言模型在RAM与泛化问题上的挑战&am…

微信小程序 获取当前屏幕的可见高宽度

很多时候我们做一下逻辑 需要用整个窗口的高度或宽度参与计算 而且很多时候我们js中拿到的单位都是px像素点 没办法和rpx同流合污 官方提供了wx.getSystemInfoSync() 可以获取到部分窗口信息 其中就包括了整个窗口的宽度和高度 wx.getSystemInfoSync().windowHeight 返回值为像…

微店商品链接获取微店商品详情数据(用 Python实现微店商品信息抓取)

在网页抓取方面&#xff0c;可以使用 Python、Java 等编程语言编写程序&#xff0c;通过模拟 HTTP 请求&#xff0c;获取微店网站上的商品页面。在数据提取方面&#xff0c;可以使用正则表达式、XPath 等方式从 HTML 代码中提取出有用的信息。值得注意的是&#xff0c;微店网站…

[stm32]外中断控制灯光

在STM32CubeMX中配置外部中断功能和参数 1、将上拉输入的引脚设置为&#xff1a;GPIO_EXTI功能 2、GPIO模式设为下降沿触发外部中断&#xff0c;使能上拉电阻&#xff0c;用户标签 3、要将NVIC的相关中断勾选 只有将中断源进行勾选&#xff0c;相关的中断请求才能得到内核的…

xshell安装完成在windows不能打开

文章目录 问题描述问题排查解决第一步第二步 问题描述 安装打开xshell的时候总是点击没有任何的反应&#xff0c;重启电脑后再次点击xshell也没有任何的响应。只有在重装软件后才能正常打开。 问题排查 点击打开xshell7的时候总是报如下错 在这里能看到具体的描述&#xff…

高频时序数据仓库

天软课堂将在本周四添加新主题--天软超高频行情数据。针对市场上高频行情数据处理业务的相关痛点&#xff0c;直观的在线演示如何通过天软高频数仓及高性能计算能力&#xff0c;将其逐个击破&#xff0c;期待各位老师的参会。

Android攻城狮学鸿蒙-配置

1、config.json配置 鸿蒙中的config.json应该类似于Android开发中Manifest.xml&#xff0c;可以进行页面的配置。根据顺序&#xff0c;会识别启动应用的时候&#xff0c;要打开哪个界面。 2、 Ability详解&#xff0c;以及与Android的Activity对比。 他人的学习文章连接&…

奖品定制经营商城小程序的作用是什么

奖品是激励人员团体很好的方式&#xff0c;也是荣誉象征&#xff0c;奖牌、奖杯、高端礼盒等&#xff0c;同时市场中团体非常多&#xff0c;其需求也是很多&#xff0c;尤其定制方面&#xff0c;就更是不用说。 对奖品定制企业来说&#xff0c;除了线下门店获客经营外&#xf…

从零学算法(LCR 180)

文件组合.待传输文件被切分成多个部分&#xff0c;按照原排列顺序&#xff0c;每部分文件编号均为一个 正整数&#xff08;至少含有两个文件&#xff09;。传输要求为&#xff1a;连续文件编号总和为接收方指定数字 target 的所有文件。请返回所有符合该要求的文件传输组合列表…

Idea JavaWeb项目,继承自HttpFilter的过滤器,启动Tomcat时部署工件出错

JDK版本&#xff1a;1.8 Tomcat版本&#xff1a;8.5 10-Oct-2023 13:55:17.586 严重 [RMI TCP Connection(3)-127.0.0.1] org.apache.catalina.core.StandardContext.startInternal One or more Filters failed to start. Full details will be found in the appropriate conta…