随着 ChatGPT 凭借 GPT-4V(ision) 获得关注,多模态 AI 不断发展

原创 | 文 BFT机器人

图片

在不断努力让人工智能更像人类的过程中,OpenAI的GPT模型不断突破界限GPT-4现在能够接受文本和图像的提示。

生成式人工智能中的多模态表示模型根据输入生成文本、图像或音频等各种输出的能力。这些模型经过特定数据的训练,学习底层模式以生成类似的新数据,丰富人工智能应用。

PART 01

多模式人工智能的最新进展

最近,该领域取得了显着的飞跃,将DALL-E 3集成到ChatGPT中,这是OpenAI文本到图像技术的重大升级。这种混合可以实现更流畅的交互,ChatGPT有助于为DALL-E3制作精确的提示,将用户的想法转化为生动的AI生成的艺术。因此,虽然用户可以直接与DALL-E3交互,但将ChatGPT加入其中使得创建AI艺术的过程更加用户友好。

在此处查看有关DALL-E3及其与ChatGPT集成的更多信息。此次合作不仅展示了多模态人工智能的进步,也让用户的人工智能艺术创作变得轻而易举。

图片

另一方面,谷歌健康于今年6月推出了Med-PaLMM。它是一种多模式生成模型,擅长编码和解释不同的生物医学数据。这是通过利用开源基准MultiMedBench微调语言模型PaLM-E来满足医学领域的需求而实现的。该基准包含7种生物医学数据类型的超过100万个样本以及医学问答和放射学报告生成等14项任务。

各行业正在采用创新的多模式人工智能工具来推动业务扩展、简化运营并提高客户参与度。语音、视频和文本人工智能功能的进步正在推动多模式人工智能的增长。

企业寻求能够彻底改变业务模型和流程的多模式人工智能应用程序,从数据工具到新兴人工智能应用程序,在生成式人工智能生态系统中开辟增长途径。

GPT-4 在3月份推出后,一些用户发现其响应质量随着时间的推移而下降,著名开发人员和OpenAI论坛也表达了这一担忧。最初被OpenAI驳回,后来的一项研究证实了这个问题。报告显示,3月至6月期间,GPT-4的准确率从97.6%下降至 2.4%,这表明随着后续模型更新,答案质量有所下降。

图片

ChatGPT(蓝色)和人工智能(红色)Google搜索趋势

围绕OpenAI的ChatGPT的炒作现在又回来了。它现在配备了视觉功能GPT-4V,允许用户让GPT-4分析他们给出的图像。这是向用户开放的最新功能。

一些人认为,将图像分析添加到GPT-4等大型语言模型 (LLM) 中是人工智能研究和开发的一大进步。这种多模式法学硕士开辟了新的可能性,将语言模型超越文本,提供新的界面并解决新类型的任务,为用户创造新鲜的体验。

GPT-4V的训练于2022年完成,抢先体验于2023年3月推出。GPT-4V的视觉功能由GPT-4技术提供支持。培训过程保持不变。最初,该模型被训练为使用来自包括互联网在内的各种来源的文本和图像的大量数据集来预测文本中的下一个单词。

后来,它使用更多数据进行了微调,采用了一种名为“人类反馈强化学习”(RLHF)的方法,以生成人类喜欢的输出。

PART 02

GPT-4 视觉力学

GPT-4卓越的视觉语言能力虽然令人印象深刻,但其底层方法仍然停留在表面。

为了探索这一假设,引入了一种新的视觉语言模型MiniGPT-4 ,利用名为Vicuna的高级法学硕士。该模型使用带有预先训练的视觉感知组件的视觉编码器,通过单个投影层将编码的视觉特征与Vicuna语言模型对齐。MiniGPT-4的架构简单而有效,重点是协调视觉和语言特征以提高视觉对话能力。

图片

MiniGPT-4的架构包括一个带有预训练ViT和Q-Former的视觉编码器、一个线性投影层和一个高级Vicuna大语言模型。

视觉语言任务中自回归语言模型的趋势也在增长,利用跨模态迁移在语言和多模态领域之间共享知识。

MiniGPT-4通过将预先训练的视觉编码器的视觉信息与高级LLM对齐,在视觉和语言领域之间架起桥梁。该模型利用Vicuna作为语言解码器,并遵循两阶段训练方法。最初,它在大型图像文本对数据集上进行训练,以掌握视觉语言知识,然后对较小的高质量数据集进行微调,以增强生成的可靠性和可用性。

为了提高MiniGPT-4中生成语言的自然性和可用性,研究人员开发了一个两阶段对齐过程,解决了缺乏足够的视觉语言对齐数据集的问题。他们为此目的策划了一个专门的数据集。

最初,该模型生成输入图像的详细描述,通过使用与 Vicuna 语言模型格式一致的对话提示来增强细节。此阶段旨在生成更全面的图像描述。

初始图像描述提示:

###Human: <Img><ImageFeature></Img>详细描述此图像。提供尽可能多的细节。说出你所看到的一切。###助手:

对于数据后处理,使用 ChatGPT 纠正生成的描述中的任何不一致或错误,然后进行手动验证以确保高质量。

第二阶段微调提示:

###人类:<Img><ImageFeature></Img><指令>###助理:

这一探索打开了一扇了解GPT-4等多模态生成人工智能机制的窗口,揭示了如何有效地整合视觉和语言模态以生成连贯且上下文丰富的输出。

PART 03

探索 GPT-4 愿景使用 ChatGPT 确定图像来源

GPT-4Vision增强了ChatGPT分析图像并查明其地理来源的能力。此功能将用户交互从单纯的文本转换为文本和视觉效果的混合,成为那些通过图像数据对不同地点感到好奇的人的便捷工具。

图片

复杂的数学概念

GPT-4Vision擅长通过分析图形或手写表达式来深入研究复杂的数学思想。对于寻求解决复杂数学问题的个人来说,此功能是一个有用的工具,使GPT-4Vision成为教育和学术领域的显着帮助。

图片

将手写输入转换为 LaTeX 代码

GPT-4V的卓越功能之一是能够将手写输入转换为LaTeX代码。对于经常需要将手写数学表达式或其他技术信息转换为数字格式的研究人员、学者和学生来说,此功能是一个福音。从手写到LaTeX的转变扩大了文档数字化的范围并简化了技术写作过程。

图片

GPT-4V能够将手写输入转换为LaTeX代码

提取表详细信息

GPT-4V展示了从表格中提取详细信息和解决相关查询的技能,这是数据分析中的重要资产。用户可以利用GPT-4V筛选表格、收集关键见解并解决数据驱动的问题,使其成为数据分析师和其他专业人士的强大工具。

图片

GPT-4V破译表详细信息并响应相关查询

理解视觉指向

GPT-4V理解视觉指向的独特能力为用户交互增添了新的维度。通过理解视觉线索,GPT-4V可以以更高的上下文理解来响应查询。

图片

GPT-4V展示了理解视觉指向的独特能力

使用绘图构建简单的模型网站

受此推文的启发,我尝试为unity.ai网站创建一个模型。

图片

基于ChatGPTVision的输出HTML前端

GPT-4V(ision) 的局限性和缺陷

为了分析GPT-4V,OpenAI团队进行了定性和定量评估。定性测试包括内部测试和外部专家评审,而定量测试则测量各种场景下的模型拒绝率和准确性,例如识别有害内容、人口统计识别、隐私问题、地理位置、网络安全和多模式越狱。

该模型仍然不完美。

该论文强调了GPT-4V的局限性,例如错误的推理以及图像中缺少文本或字符。它可能会产生幻觉或编造事实。特别是,它不适合识别图像中的危险物质,经常会错误识别它们。

在医学成像中,GPT-4V可能会提供不一致的响应,并且缺乏对标准实践的认识,从而导致潜在的误诊。

图片

用于医疗目的的不可靠性能(来源)

它还无法掌握某些仇恨符号的细微差别,并可能根据视觉输入生成不适当的内容。OpenAI建议不要使用GPT-4V进行批判性解释,尤其是在医疗或敏感环境中。

包起来

图片

使用FastStableDiffusionXL创

https://huggingface.co/spaces/google/sdxl

GPT-4Vision (GPT-4V) 的到来带来了一系列很酷的可能性和需要跨越的新障碍。在推出之前,我们已经付出了大量努力来确保风险得到充分研究并减少,尤其是涉及人物照片时。看到GPT-4V的进步令人印象深刻,在医学和科学等棘手领域展现出巨大的前景。

现在,有一些重大问题摆在桌面上。例如,这些模型是否应该能够从照片中识别出名人?他们应该从照片中猜测一个人的性别、种族或感受吗?而且,是否应该进行特殊调整来帮助视障人士?这些问题引发了一系列关于隐私、公平以及人工智能应该如何融入我们的生活的争论,这是每个人都应该有发言权的问题。

文章翻译 | 春花

排版 | 春花

审核 | 橙橙

若您对该文章内容有任何疑问,请与我们联系,将及时回应。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/154411.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

学生台灯买什么样的好?双十一学生台灯推荐

不得不说光线会孩子的影响还是蛮大的&#xff0c;不仅会影响学习的效率&#xff0c;还会影响视力健康。很多家长认为孩子近视的主要原因是玩电子产品或者不良的坐姿、用眼习惯导致的&#xff0c;其实这些并不全是造成近视的因素&#xff0c;最主要的原因还是长时间的用眼导致的…

HTML5使用html2canvas转化为图片,然后再转为base64.

介绍 场景&#xff1a;今天同事提了个协助&#xff0c;将HTML5文件中的元素转为图片&#xff0c;并且最终转为base64格式传给后端。感觉还挺有意思就记录下。&#xff08;试例如下&#xff09; 步骤一&#xff1a;引入html2canvas 的js源码 html2canvas.min.js 下载地址 htt…

【密码学】Java实现DH函数时出现“Unsupported secret key algorithm: AES“错误

问题描述 jdk版本&#xff1a;8 使用DH和AES算法&#xff0c;实现密钥的交换和加密&#xff0c;测试时报错 java.security.NoSuchAlgorithmException: Unsupported secret key algorithm: AESat com.sun.crypto.provider.DHKeyAgreement.engineGenerateSecret(DHKeyAgreement…

vue 项目打包性能分析插件 webpack-bundle-analyzer

webpack-bundle-analyzer 是 webpack 的插件&#xff0c;需要配合 webpack 和 webpack-cli 一起使用。这个插件可以读取输出文件夹&#xff08;通常是 dist&#xff09;中的 stats.json 文件&#xff0c;把该文件可视化展现&#xff0c;生成代码分析报告&#xff0c;可以直观地…

高效数据传输:Java通过绑定快速将数据导出至Excel

摘要&#xff1a;本文由葡萄城技术团队原创并首发。转载请注明出处&#xff1a;葡萄城官网&#xff0c;葡萄城为开发者提供专业的开发工具、解决方案和服务&#xff0c;赋能开发者。 前言 把数据导出至 Excel 是很常见的需求&#xff0c;而数据的持久化&#xff0c;往往又放在…

2023年入职/转行网络安全,该如何规划?

前言 前段时间&#xff0c;知名机构麦可思研究院发布了 《2022年中国本科生就业报告》&#xff0c;其中详细列出近五年的本科绿牌专业&#xff0c;其中&#xff0c;信息安全位列第一。 网络安全前景 对于网络安全的发展与就业前景&#xff0c;想必无需我多言&#xff0c;作为…

SQL sever中的视图

目录 一、视图概述&#xff1a; 二、视图好处 三、创建视图 法一&#xff1a; 法二&#xff1a; 四、查看视图信息 五、视图插入数据 六、视图修改数据 七、视图删除数据 八、删除视图 法一&#xff1a; 法二&#xff1a; 一、视图概述&#xff1a; 视图是一种常用…

亚马逊测评工作室应该如何开展,需要准备哪些?

亚马逊测评自养号项目需要用到哪些资源呢&#xff1f;1. 防火墙独立的环境 纯净IP注册资料收货地址支付卡邮箱及手机号 想做好这个项目以上的资源缺一不可 我们先来说说养号的环境&#xff0c;养号的环境在以前的文章里也提到过&#xff0c;有很多种方案&#xff0c;我们曾经…

JUC并发编程:Monitor和对象结构

JUC并发编程&#xff1a;Monitor和对象结构 1. Monitor1.1 对象的结构1.1.1 MarkWord1.1.2 Klass Word1.1.3 数组长度1.1.4 &#x1f330; 1. Monitor Monitor官方文档 我们可以把Monitor理解为一个同步工具&#xff0c;也可以认为是一种同步机制。它通常被描述为一个对象&…

软考高级架构师下篇-18大数据架构理论设计与实践

目录 1. 引言2. 传统数据处理系统的问题1.传统数据库的数据过载问题2.大数据的特点3.大数据利用过程4.大数据处理系统架构分析3.典型的大数据架构1. Lambda架构2.Kappa架构3. Lambda架构与Kappa架构的对比4.大数据架构的实践1.大规模视频网络2.广告平台3.公司智能决策大数据系统…

Android系统修改AOSP输入法默认输入语言

Android系统中的Android键盘(AOSP)有个语言设置选项,里面默认的是“使用系统语言”,现在客户要求关闭默认“使用系统语言”,打开美式英语。即默认如下图: 网上很多方法都是设置输入法的Settings.Secure.SELECTED_INPUT_METHOD_SUBTYPE属性为 -921088104。实际测试在Andr…

黑盒测试方法:原理+实战

目录 一、如何设计测试用例 二、黑盒测试常用方法 1、基于需求进行测试用例的设计 2、等价类 3、边界值 4、判定表分析法&#xff08;因果分析法&#xff09; 5、正交表 6、场景设计法 三、案例补充 1、使用Fiddler模拟弱网 2、针对一个接口该如何测试 一、如何设计测试…

算法——动态规划

一、 53. 最大子数组和 - 力扣&#xff08;LeetCode&#xff09; 最大子数组和&#xff0c;可以建立一个dp表&#xff0c;来存放当前的位置的累加的最大和 int maxSubArray(vector<int>& nums) {int nnums.size();if(n1)return nums[0];vector<int> dp(n);int…

【办公自动化】在Excel中按条件筛选数据并存入新的表2.0(文末送书)

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…

利达卓越:绿色金融助推经济高质量发展

随着环境问题的日益突出和可持续发展的需求增加,绿色金融将成为金融发展的重要方向之一。政府、金融机构、企业和公众都将加大对绿色金融的支持和关注,绿色金融也将更加成熟和规范。利达卓越积极推动绿色金融的快速发展,为实现可持续发展目标提供了重要支持。绿色金融将成为金融…

uni-app生命周期

uni-app的生命周期包括&#xff1a;应用生命周期、页面生命周期、组件生命周期 一、应用生命周期&#xff08;只能在App.vue文件中监听&#xff09; 函数说明onLaunch初始化完成时触发&#xff08;全局只触发一次&#xff09;onShow启动时或从后台进入前台显示onHide从前台进入…

Django实战项目-学习任务系统-用户注册

接着上期代码框架&#xff0c;开发第2个功能&#xff0c;用户注册&#xff0c;在原有用户模型基础上&#xff0c;增加一个学生用户属性表&#xff0c;用来关联学生用户的各种属性值&#xff0c;这个属性表是参考网络小说里系统属性值设计的&#xff0c;方便直观了解用户的能力高…

如何使用摩尔信使MThings连接网络设备

帽子&#xff1a; 摩尔信使MThings支持Modbus-TCP、Modbus-RTU Over TCP、Modbus-TCP Over UDP、Modbus-RTU Over UDP。 TCP链接中&#xff0c;摩尔信使MThings支持灵活的连接方式&#xff0c;主机可作为客户端也可以作为服务端&#xff0c;同时支持模拟从机以客户端方式向远…

新媒体达人投放技巧有哪些,投放总结!

达人投放&#xff0c;一个当今时代品牌传播跳不开的词。关于达人投放的优势与特点&#xff0c;相信所有人都已经不在陌生。但是真的进行达人投放时&#xff0c;又该如何实施&#xff0c;今天来分享下新媒体达人投放技巧有哪些&#xff0c;投放总结&#xff01; 一、品牌不同阶段…

C语言,输出最长连号的个数

数据范围&#xff1a;0 < n <10000. 最长连号&#xff0c;就是一组数字里面出现的连续的数字的最长长度。这里的连号最长是2 3 4 5 6&#xff0c;个数为5。 要实现求连号的个数&#xff0c;就要创建一个变量&#xff0c;用来专门计算连号的个数。在不满足连号时&#xf…