【Python 零基础入门】 函数

【Python 零基础入门】第五课 函数

  • 【Python 零基础入门】第五课 函数
  • 函数在生活中的类比
  • 函数
    • 为什么要使用函数
    • 函数的格式
    • 无参函数
    • 含参函数
  • 参数
    • 形参
    • 实参
  • 变量
    • 作用域
    • 局部变量
    • 全局变量
  • 递归函数
    • 基本的递归
    • 斐波那契数列
  • Lambda 表达式
  • 高阶函数
    • map 函数
    • filter 函数
    • reduce 函数
    • 结合
  • Python 装饰器 (了解)
    • 基础装饰器
    • 参数化装饰器
  • 生成器 (了解)
    • 基础生成器
    • 生成器表达式
  • 总结
  • 练习
    • 基础函数练习
    • 递归练习
    • Lambda 表达式
  • 答案
    • 基础函数练习
    • 递归函数
    • Lambda 表达式

【Python 零基础入门】第五课 函数

当我们首次接触到编程时, 我们往往会听到 “函数” 这个概念. 那么问题来了, 函数到底是什么? 为什么函数在编程中如此重要? 简而言之, 函数是一个独立的代码块, 可以帮助我们执行某个特定的任务. 你可以将函数想象成一个机器人, 帮我我们来执行任务. 我们给它输入, 处理后, 返回给我们一个输出. 在代码中使用函数不仅能使得代码有更好的可读性, 而且能帮助我们避免重复 & 减少错误.

Python 零基础入门 函数

函数在生活中的类比

想象一下, 每天早晨你都会做同样的事情: 起床, 洗脸, 刷牙, 吃早餐. 现在, 如果每天你都要详细列出这些步骤, 那么一段时间后, 这会变得非常枯燥和重复. 相反, 你可能更倾向于简单地说: “我正在做我的早晨例行公事”. 这就是函数在编程中的作用. 它允许你将一个任务的所有步骤封装在一个定义良好的代码块中, 然后通过一个简单的函数调用来执行它.

函数

函数 (Function) 是一段可以帮助我们实现我们想要功能的代码段. 函数可以重复使用, 我们也可以自定义函数. 在 Python 中, 函数可以帮助我们, 执行单一的, 相关的操作. 函数可以提高应用的模块性, 并提高代码的复用率. Python 为我们提供了许多内置函数, 如print(), 但我们也可以自己创建函数, 这些被称为自定义函数.

在这里插入图片描述

为什么要使用函数

函数 (Function) 提供了一种将复杂问题拆分的方法. 通过定义函数, 我们可以避免重复相同的代码, 提高程序可读性, 以便更好的维护.

函数的格式

在 Python 中, 我们可以使用 “def” 关键字来定义函数. 函数可以带参数也可以不带参数.

格式:

# 定义函数
def 函数名(参数1, 参数2, 参数3...):函数主体

定义了函数之后, 我们可以通过函数名来调用函数, 并传递必要的参数:

# 调用函数
函数名(参数1, 参数2, 参数3...)

无参函数

例子:

# 定义无参函数
def func():print("祖国你好")# 调用函数
func()

输出结果:

祖国你好

含参函数

例子:

# 定义函数
def num_compare(num1, num2):# 条件判断, 比较数字大小if num1 > num2:print("第一个数字大")elif num1 == num2:print("两个数字相同")else:print("第二个数字大")# 调用函数
num_compare(1, 2)

输出结果:

第二个数字大

更优的写法:

# 定义函数
def num_compare(num1, num2):# 判断传入的参数是否为数字if str(num1).isdigit() == False or str(num2).isdigit() == False:print("参数必须为数字")return  # 跳出函数# 条件判断, 比较数字大小if num1 > num2:print("第一个数字大")elif num1 == num2:print("两个数字相同")else:print("第二个数字大")# 调用函数
num_compare("a", 2)
num_compare("c", "d")
num_compare(1, 2)

输出结果:

参数必须为数字
参数必须为数字
第二个数字大

我们将传入的参数转换为字符串 (String), 然后通过函数isdigit()判断是否为数字, 避免了可能会发生的错误.

参数

参数 (Parameter)

Python 中的参数有两大类:

  • 形式参数
  • 实际参数

在这里插入图片描述

形参

形参 (形式参数), 是在函数定义, 的时候命名的参数.

例子:

# 定义函数
def sum(num1, num2):  # num1, num2为形式参数# 返回求和return num1 + num2# 获取结果
total = sum(2, 3)  # 2, 3为实际参数
print(total)

输出结果:

5

实参

实参 (实际参数) 是在实际执行是, 传递给函数的参数. 形参相当于实参的一个副本.

例子:

# 定义函数
def multi(num1, num2):  # num1, num2为形式参数# 返回乘积return num1 *num2# 获取结果
total = multi(2, 3)  # 2, 3为实际参数
print(total)

输出结果:

6

变量

作用域

作用域 (Scope) 是函数中的一个重要概念. 函数内部什么的变量是局部变量 (Local Variable) 仅在函数内有效, 而在函数外部声明的变量属于全局变量 (Global Variable), 作用域为全局.

局部变量

局部变量 (Local Variable) 只能在变量所在的函数内使用. 当我们创建局部变量时, 内存中会临时分配一块空间, 当函数执行完该临时空间就会被回收.

例子:

# 定义函数
def func():# 局部变量a = 10b = 20# 调试输出print("函数内")print(a)print(b)# 调用函数
func()# 在函数外调用变量 (报错)
print("函数外")
print(a)
print(b)

输出结果:

Traceback (most recent call last):File "C:/Users/Windows/Desktop/讲课/第五课 函数/第五课 局部变量.py", line 17, in <module>print(a)
NameError: name 'a' is not defined
函数内
10
20
函数外

注意: 局部变量无法在函数外调用

全局变量

例子:

# 在函数体外定义的变量为全局变量
a = 10# 定义函数
def func():# 使用global修饰符在函数内申明变量global bb = 10# 调试输出print("函数内")print(a)print(b)# 调用函数
func()# 输出结果
print("函数外")
print(a)
print(b)

输出结果:

函数内
10
10
函数外
10
10

递归函数

递归函数 (Recursive Functions) 是一种自己调用自己的函数. 使用递归函数可以解决很多问题, 例如计算接触货斐波那契数列.

格式:

def 递归函数(参数):if 停止条件:  # 也被称为基线条件 (base case)return 基线结果else:# 更新参数,通常是减小问题规模新参数 = 更新参数(参数) return 一些操作 + 递归函数(新参数)

基本的递归

阶乘的例子:

5! = 5 × 4 × 3 × 2 × 1 = 120

在这里插入图片描述

定义一个递归函数来计算阶乘:

# 定义阶乘函数
def factorial(n):if n == 1:return 1else:# 递归return n * factorial(n - 1)print(factorial(5))

输出结果:

120

斐波那契数列

讲一下递归中讲点的例子, 斐波那契数列 (Fibonacci Sequence) 的前两个数字是 0 和 1, 之后每个数字都是前两个数字的和:

# 定义斐波那契函数
def fibonacci(n):# 停止条件if n <= 1:return n# 递归, 前两数相加return fibonacci(n-1) + fibonacci(n-2)print(fibonacci(7))

输出结果:

120
13

Lambda 表达式

Lambda 表达式又被称为匿名函数, 因为 Lambda 表达式没有具体的名字.

例子:

# 基本的算术操作
f = lambda x, y: x + y  # 加法
print(f(2, 3))  # 输出: 5# 字符串操作
capitalize = lambda s: s.capitalize()  # 大写
print(capitalize('hello'))  # 输出: Hello# 逻辑操作
is_even = lambda x: x % 2 == 0
print(is_even(4))  # 输出: True# 列表操作
get_last = lambda x: x[-1]  # 取最后元素
print(get_last([1, 2, 3, 4]))  # 输出: 4# 条件操作
check_sign = lambda x: 'positive' if x > 0 else 'negative' if x < 0 else 'zero'
print(check_sign(-5))  # 输出: negative# 函数作为参数
numbers = [1, 2, 3, 4]
squared = map(lambda x: x**2, numbers)
print(list(squared))  # 输出: [1, 4, 9, 16]

高阶函数

下面我们来讲一下 Python 中常用的高阶函数. Python 中的内置函数map(), filter(), reduce()都是高阶函数的例子.

map 函数

map()函数可以将一个函数应用于一个或多个可迭代对象.

格式:

map(function, iterables)

参数:

  • function: 函数
  • iterables: 可迭代函数, 比如数组

例子:

# 创建数组
numbers = [1, 2, 3, 4]
squared = map(lambda x: x**2, numbers)  
print(list(squared))  

输出结果:

[1, 4, 9, 16]

filter 函数

filter()函数用于过滤可迭代对象, 返回一个迭代器.

# 创建数组
numbers = [1, 2, 3, 4, 5]
even_numbers = filter(lambda x: x % 2 == 0, numbers)  # 使用 Lambda 进行筛选
print(list(even_numbers)) 

输出结果:

[2, 4]

reduce 函数

reduce()函数连续地应用函数到一个序列上, 从左到右, 以减少该序列一个个的值. 我们可以使用reduce()来对所有元素进行求和.

例子:

from functools import reduce# 创建数组
numbers = [1, 2, 3, 4]
result = reduce(lambda x, y: x + y, numbers)
print(result) 

输出结果:

10

结合

先使用map()计算每个数字的平方, 然后使用filter()函数过滤出偶数平方.

# 创建数组
numbers = [1, 2, 3, 4, 5]
squared = map(lambda x: x**2, numbers)
even_squares = filter(lambda x: x % 2 == 0, squared)
print(list(even_squares))

输出结果:

[4, 16]

高阶函数的好处:

  • 使用高阶函数可以使得我们的代码更简洁, 易读. 高阶函数允许我们在更高的层次上考虑的的代码逻辑, 而不是深陷于循环和条件语句的细节.

Python 装饰器 (了解)

装饰器 (Decorator) 是 Python 的一个强大工具, 允许我们在不修改原有代码的情况下增加函数或方法.

基础装饰器

下面是一个基础装饰器, 会在函数运行前后都输出一条信息:

# 定义装饰器
def simple_decorator(func):"""基础装饰器:param func: 函数作为参数:return: 包装函数"""def wrapper():print("函数运行前")func()print("函数运行后")return wrapper# 使用装饰器
@simple_decorator
def hello():print("Hello, World!")# 调用函数
hello()

输出结果:

函数运行前
Hello, World!
函数运行后

参数化装饰器

def repeat(num):def decorator(func):def wrapper(*args, **kwargs):for _ in range(num):func(*args, **kwargs)return wrapperreturn decorator@repeat(num=3)
def greet(name):print(f"Hello, {name}!")greet("我是小白呀")

输出结果:

Hello, 我是小白呀!
Hello, 我是小白呀!
Hello, 我是小白呀!

生成器 (了解)

生成器 (Generator) 是 Python 中的一种迭代器, 允许我们在迭代时动态生成值, 而不是预先在内存中存储它们.

基础生成器

通过使用yield关键字, 创建一个简单的生成器.

例子:

def simple_generator():yield 1yield 2yield 3gen = simple_generator()
print(next(gen))  # 输出: 1
print(next(gen))  # 输出: 2

输出结果:

1
2

生成器表达式

例子:

squared = (x*x for x in range(5))
print(next(squared))  # 输出: 0
print(next(squared))  # 输出: 1

输出结果:

0
1

总结

函数是编程中的核心构建块之一, 它们不仅提供了一种组织和复用代码的方式, 还为代码的模块化提供了一种手段。通过这篇博客, 我们已经探讨了 Python 中函数的各个方面, 从基础的函数定义和调用, 到参数传递, 再到更高级的概念, 如闭包, 装饰器和高阶函数.

我们学习了如何使用默认参数, 关键字参数和可变参数来给函数提供更大的灵活性. 同时, 我们也了解了如何使用返回值来将数据从函数传回给调用者.

在深入研究高阶函数时, 我们发现 Python 的函数是一等公民, 可以像其他对象一样被传递和返回. 这为我们提供了强大的工具, 如 map()、filter() 和 reduce(), 使我们能够编写更简洁和高效的代码.

练习

基础函数练习

练习 1:

  • 编写一个函数,接受两个数字参数并返回它们的和
    练习 2:
  • 编写一个函数,接受一个字符串参数并返回其反转字符串
    练习 3:
  • 创建一个函数,接受一个整数列表并返回其平均值

递归练习

练习:

  • 设计一个递归函数,检查一个字符串是否是回文

Lambda 表达式

练习 1:

  • 使用 filter() 函数和 lambda 表达式从一个整数列表中筛选出平方数
    练习 2:
  • 使用 map() 函数和 lambda 表达式将一个整数列表中的每个数字立方
    练习 3:
    使用 reduce() 函数和 lambda 表达式计算数字列表的乘积
    练习 4:
    在不使用切片的情况下, 使用 lambda 表达式反转列表

答案

基础函数练习

练习 1:

"""
@Module Name: 基础函数练习.py
@Author: CSDN@我是小白呀
@Date: October 11, 2023Description:
基础函数练习
"""# 定义函数
def add(num1, num2):return num1 + num2# 调用函数
print("两数之和:", add(1, 2))

输出结果:

两数之和: 3

练习 2:

"""
@Module Name: 基础函数练习.py
@Author: CSDN@我是小白呀
@Date: October 11, 2023Description:
基础函数练习
"""# 定义函数
def reverse_string(str):str_list = list(str)result = "".join(str_list[::-1])return result# 调用函数
print("反转字符串:", reverse_string("我是小白呀"))

输出结果:

反转字符串: 呀白小是我

练习 3:

"""
@Module Name: 基础函数练习.py
@Author: CSDN@我是小白呀
@Date: October 11, 2023Description:
基础函数练习
"""# 定义函数
def average(array):return sum(array) / len(array)# 调用函数
print("数组平均值:", average([1, 2, 3, 4, 5]))

输出结果:

3.0

递归函数

# 定义函数
def func(str):print(str, len(str))# 停止条件if len(str) <=1:print("111111")return Trueif str[0] == str[-1]:func(str[1:-1])return False

输出结果:

True
False

Lambda 表达式

练习 1:

"""
@Module Name:  Lambda表达式.py
@Author: CSDN@我是小白呀
@Date: October 11, 2023Description:
Lambda表达式
"""# 定义列表
array = [1, 2, 3, 4, 5, 6, 7, 8, 9]
print("原始数组:", array)# Lambda表达式
array_even = list(filter(lambda x:x**0.5 % 1 == 0, array))
print("筛选平方数:", array_even)

输出结果:

原始数组: [1, 2, 3, 4, 5, 6, 7, 8, 9]
筛选平方数: [1, 4, 9]

练习 2:

"""
@Module Name:  Lambda表达式.py
@Author: CSDN@我是小白呀
@Date: October 11, 2023Description:
Lambda表达式
"""# 定义列表
array = [1, 2, 3, 4, 5, 6, 7, 8, 9]
print("原始数组:", array)# Lambda表达式
array_cube = list(map(lambda x:x**3, array))
print("数组立方:", array_cube)

输出结果:

原始数组: [1, 2, 3, 4, 5, 6, 7, 8, 9]
数组立方: [1, 8, 27, 64, 125, 216, 343, 512, 729]

练习 3:

"""
@Module Name:  Lambda表达式.py
@Author: CSDN@我是小白呀
@Date: October 11, 2023Description:
Lambda表达式
"""from functools import reduce# 定义列表
array = [1, 2, 3, 4, 5, 6, 7, 8, 9]
print("原始数组:", array)# Lambda表达式
result = reduce(lambda x, y:x*y, array)
print("数组乘积:", result)

输出结果:

原始数组: [1, 2, 3, 4, 5, 6, 7, 8, 9]
数组立方: 362880

练习 4:

"""
@Module Name:  Lambda表达式.py
@Author: CSDN@我是小白呀
@Date: October 11, 2023Description:
Lambda表达式
"""from functools import reduce# 定义列表
array = [1, 2, 3, 4, 5, 6, 7, 8, 9]
print("原始数组:", array)# Lambda表达式
result = reduce(lambda x, y:[y] + x, array, [])
print("反转后的数组:", result)

输出结果:

原始数组: [1, 2, 3, 4, 5, 6, 7, 8, 9]
反转后的数组: [9, 8, 7, 6, 5, 4, 3, 2, 1]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/155524.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Node历史版本下载及配置npm镜像

https://nodejs.org/en/download/releases 点击对应版本Release,选择合适的包&#xff0c;进行下载安装。 配置国内镜像 npm config set registry https://registry.npmmirror.com/

Practical Memory Leak Detection using Guarded Value-Flow Analysis 论文阅读

本文于 2007 年投稿于 ACM-SIGPLAN 会议1。 概述 指针在代码编写过程中可能出现以下两种问题&#xff1a; 存在一条执行路径&#xff0c;指针未成功释放&#xff08;内存泄漏&#xff09;&#xff0c;如下面代码中注释部分所表明的&#xff1a; int foo() {int *p malloc(4 …

上海亚商投顾:沪指冲高回落 医药、芯片股全天领涨

上海亚商投顾前言&#xff1a;无惧大盘涨跌&#xff0c;解密龙虎榜资金&#xff0c;跟踪一线游资和机构资金动向&#xff0c;识别短期热点和强势个股。 一.市场情绪 沪指昨日小幅反弹&#xff0c;创业板指盘中涨超1.6%&#xff0c;午后涨幅有所收窄。医药医疗股全线走强&#…

LLM - 旋转位置编码 RoPE 代码详解

目录 一.引言 二.RoPE 理论 1.RoPE 矩阵形式 2.RoPE 图例形式 3.RoPE 实践分析 三.RoPE 代码分析 1.源码获取 2.源码分析 3.rotary_emb 3.1 __init__ 3.2 forward 4.apply_rotary_pos_emb 4.1 rotate_half 4.2 apply_rotary_pos_emb 四.RoPE 代码实现 1.Q/K/V …

飞桨大模型套件:一站式体验,性能极致,生态兼容

在Wave Summit 2023深度学习开发者大会上&#xff0c;来自百度的资深研发工程师贺思俊和王冠中带来的分享主题是&#xff1a;飞桨大模型套件&#xff0c;一站式体验&#xff0c;性能极致&#xff0c;生态兼容。 大语言模型套件PaddleNLP 众所周知PaddleNLP并不是一个全新的模型…

腾讯云轻量2核4G5M可容纳多少人访问?

腾讯云2核4G5M服务器支持多少人在线访问&#xff1f;卡不卡&#xff1f;腾讯云轻量2核4G5M带宽服务器支持多少人在线访问&#xff1f;5M带宽下载速度峰值可达640KB/秒&#xff0c;阿腾云以搭建网站为例&#xff0c;假设优化后平均大小为60KB&#xff0c;则5M带宽可支撑10个用户…

ad5665r STM32 GD32 IIC驱动设计

本文涉及文档工程代码&#xff0c;下载地址如下 ad5665rSTM32GD32IIC驱动设计,驱动程序在AD公司提供例程上修改得到,IO模拟的方式进行IIC通信资源-CSDN文库 硬件设计 MCU采用STM32或者GD32,GD32基本上和STM32一样,针对ad566r的IIC时序操作是完全相同的. 原理图设计如下 与MC…

matlab绘制尖角colorbar

Matlab代码 cmap [69 117 180116 173 203171 217 233254 224 144253 174 77244 109 67215 48 39165 0 38]/255; %画图的部分代码 figure set(gcf,outerposition,get(0,screensize)) ax axes(Position,[0.2 0.2 0.6 0.6]); % pos需要自己设置位置 h colorbar; % colormap(ax…

bash上下键选择选项demo脚本

效果如下&#xff1a; 废话不多说&#xff0c;上代码&#xff1a; #!/bin/bashoptions("111" "222" "333" "444") # 选项列表 options_index0 # 默认选中第一个选项 options_len${#options[]}echo "请用上下方向键进行选择&am…

Windows11下清理Docker Desktop与wsl的C盘空间占用

一、清理Docker Desktop的磁盘占用 //【查看docker 占用的空间】 docker system dfTYPE 列出了docker 使用磁盘的 4 种类型&#xff1a; Images&#xff1a;所有镜像占用的空间&#xff0c;包括拉取下来的镜像&#xff0c;和本地构建的。Containers&#xff1a;运行的容器占用…

华为云云耀云服务器L实例评测 | 实例使用教学之综合导览

华为云云耀云服务器L实例评测 &#xff5c; 实例使用教学之综合导览 实例使用教学实例场景体验实例性能评测实例评测使用介绍华为云云耀云服务器 华为云云耀云服务器 &#xff08;目前已经全新升级为 华为云云耀云服务器L实例&#xff09; 华为云云耀云服务器是什么华为云云耀云…

k8s 集群部署 kubesphere

一、最小化部署 kubesphere 1、在已有的 Kubernetes 集群上部署 KubeSphere&#xff0c;下载 YAML 文件: wget https://github.com/kubesphere/ks-installer/releases/download/v3.4.0/kubesphere-installer.yaml wget https://github.com/kubesphere/ks-installer/releases/…

力扣第530与783题 c++(暴力,加双指针优化) 附迭代版本

题目 530. 二叉搜索树的最小绝对差 783. 二叉搜索树节点最小距离 简单 相关标签 树 深度优先搜索 二叉搜索树 二叉树 给你一个二叉搜索树的根节点 root &#xff0c;返回 树中任意两不同节点值之间的最小差值 。 差值是一个正数&#xff0c;其数值等于两值之差的绝…

阿里云存储I/O性能、IOPS和吞吐量是什么意思?

云盘的存储I/O性能是什么&#xff1f;存储I/O性能又称存储读写性能&#xff0c;指不同阿里云服务器ECS实例规格挂载云盘时&#xff0c;可以达到的性能表现&#xff0c;包括IOPS和吞吐量。阿里云百科网aliyunbaike.com分享阿里云服务器云盘&#xff08;系统盘或数据盘&#xff0…

将网站域名访问从http升级到https(腾讯云/阿里云)

文章目录 1.前提说明2.服务器安装 docker 与 nginx2.1 安装 docker&#x1f340; 基于 centos 的安装&#x1f340; 基于ubuntu 2.2 配置阿里云国内加速器&#x1f340; 找到相应页面&#x1f340; 创建 docker 目录&#x1f340; 创建 daemon.json 文件&#x1f340; 重新加载…

请求和响应的概述

请求&#xff1a;在浏览器地址栏输入地址&#xff0c;点击回车请求服务器&#xff0c;这个过程就是一个请求过程。 响应&#xff1a;服务器根据浏览器发送的请求&#xff0c;返回数据到浏览器在网页上进行显示&#xff0c;这个过程就称之为响应。 针对Servlet的每次请求&…

4、在 CentOS 8 系统上安装 pgAdmin 4

pgAdmin 4 是一个开源的数据库管理工具&#xff0c;专门用于管理和操作 PostgreSQL 数据库系统。它提供了一个图形用户界面&#xff08;GUI&#xff09;&#xff0c;使用户能够轻松地连接到 PostgreSQL 数据库实例&#xff0c;执行 SQL 查询&#xff0c;管理数据库对象&#xf…

【ccf-csp题解】第7次csp认证-第三题-路径解析超详细题解-字符串模拟

本题思路来源于acwing ccfcsp认证课 题目描述 思路分析 首先&#xff0c;为了处理路径中的反斜杠符号&#xff0c;我们可以实现一个get函数&#xff0c;把一个路径中每一对反斜杠之间的内容存到vector<string>中&#xff0c;如果有连续的多个反斜杠则只看成一个 举个例…

集成学习的小九九

集成学习&#xff08;Ensemble Learning&#xff09;是一种机器学习的方法&#xff0c;通过结合多个基本模型的预测结果来进行决策或预测。集成学习的目标是通过组合多个模型的优势&#xff0c;并弥补单个模型的不足&#xff0c;从而提高整体性能。 集成学习的主要策略 在集成…

后厂村路灯在线签名网站,在线签名工具,IPA在线签名

IPA在线签名工具网站&#xff0c;在线实现IPA包签名 案例网站&#xff1a;在线签名 - 后厂村路灯https://sign.vx365.vip/ 用户可以自定义签名网站样式。 用户可以独立部署到自己服务器&#xff0c;使用自己的域名。 用户可以使用自己服务器&#xff0c;加快签名速度&#xf…