竞赛选题 深度学习+opencv+python实现车道线检测 - 自动驾驶

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 卷积神经网络
    • 3.1卷积层
    • 3.2 池化层
    • 3.3 激活函数:
    • 3.4 全连接层
    • 3.5 使用tensorflow中keras模块实现卷积神经网络
  • 4 YOLOV5
  • 6 数据集处理
  • 7 模型训练
  • 8 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习的自动驾驶车道线检测算法研究与实现 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:4分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

从汽车的诞生到现在为止已经有一百多年的历史了,随着车辆的增多,交通事故频繁发生,成为社会发展的隐患,人们的生命安全受到了严重威胁。多起事故发生原因中,都有一个共同点,那就是因为视觉问题使驾驶员在行车时获取不准确的信息导致交通事故的发生。为了解决这个问题,高级驾驶辅助系统(ADAS)应运而生,其中车道线检测就是ADAS中相当重要的一个环节。利用机器视觉来检测车道线相当于给汽车安装上了一双“眼睛”,从而代替人眼来获取车道线信息,在一定程度上可以减少发生交通事故的概率。
本项目基于yolov5实现图像车道线检测。

2 实现效果

在这里插入图片描述

3 卷积神经网络

受到人类大脑神经突触结构相互连接的模式启发,神经网络作为人工智能领域的重要组成部分,通过分布式的方法处理信息,可以解决复杂的非线性问题,从构造方面来看,主要包括输入层、隐藏层、输出层三大组成结构。每一个节点被称为一个神经元,存在着对应的权重参数,部分神经元存在偏置,当输入数据x进入后,对于经过的神经元都会进行类似于:y=w*x+b的线性函数的计算,其中w为该位置神经元的权值,b则为偏置函数。通过每一层神经元的逻辑运算,将结果输入至最后一层的激活函数,最后得到输出output。
在这里插入图片描述

3.1卷积层

卷积核相当于一个滑动窗口,示意图中3x3大小的卷积核依次划过6x6大小的输入数据中的对应区域,并与卷积核滑过区域做矩阵点乘,将所得结果依次填入对应位置即可得到右侧4x4尺寸的卷积特征图,例如划到右上角3x3所圈区域时,将进行0x0+1x1+2x1+1x1+0x0+1x1+1x0+2x0x1x1=6的计算操作,并将得到的数值填充到卷积特征的右上角。
在这里插入图片描述

3.2 池化层

池化操作又称为降采样,提取网络主要特征可以在达到空间不变性的效果同时,有效地减少网络参数,因而简化网络计算复杂度,防止过拟合现象的出现。在实际操作中经常使用最大池化或平均池化两种方式,如下图所示。虽然池化操作可以有效的降低参数数量,但过度池化也会导致一些图片细节的丢失,因此在搭建网络时要根据实际情况来调整池化操作。
在这里插入图片描述

3.3 激活函数:

激活函数大致分为两种,在卷积神经网络的发展前期,使用较为传统的饱和激活函数,主要包括sigmoid函数、tanh函数等;随着神经网络的发展,研宄者们发现了饱和激活函数的弱点,并针对其存在的潜在问题,研宄了非饱和激活函数,其主要含有ReLU函数及其函数变体

3.4 全连接层

在整个网络结构中起到“分类器”的作用,经过前面卷积层、池化层、激活函数层之后,网络己经对输入图片的原始数据进行特征提取,并将其映射到隐藏特征空间,全连接层将负责将学习到的特征从隐藏特征空间映射到样本标记空间,一般包括提取到的特征在图片上的位置信息以及特征所属类别概率等。将隐藏特征空间的信息具象化,也是图像处理当中的重要一环。

3.5 使用tensorflow中keras模块实现卷积神经网络

class CNN(tf.keras.Model):def __init__(self):super().__init__()self.conv1 = tf.keras.layers.Conv2D(filters=32,             # 卷积层神经元(卷积核)数目kernel_size=[5, 5],     # 感受野大小padding='same',         # padding策略(vaild 或 same)activation=tf.nn.relu   # 激活函数)self.pool1 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)self.conv2 = tf.keras.layers.Conv2D(filters=64,kernel_size=[5, 5],padding='same',activation=tf.nn.relu)self.pool2 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)self.flatten = tf.keras.layers.Reshape(target_shape=(7 * 7 * 64,))self.dense1 = tf.keras.layers.Dense(units=1024, activation=tf.nn.relu)self.dense2 = tf.keras.layers.Dense(units=10)def call(self, inputs):x = self.conv1(inputs)                  # [batch_size, 28, 28, 32]x = self.pool1(x)                       # [batch_size, 14, 14, 32]x = self.conv2(x)                       # [batch_size, 14, 14, 64]x = self.pool2(x)                       # [batch_size, 7, 7, 64]x = self.flatten(x)                     # [batch_size, 7 * 7 * 64]x = self.dense1(x)                      # [batch_size, 1024]x = self.dense2(x)                      # [batch_size, 10]output = tf.nn.softmax(x)return output

4 YOLOV5

简介
基于卷积神经网络(convolutional neural network, CNN)的目标检测模型研究可按检测阶段分为两类,一 类 是 基 于 候 选 框
的 两 阶 段 检 测 , R-CNN 、 Fast R-CNN、Faster R-CNN、Mask R-CNN都是基于
目标候选框的两阶段检测方法;另一类是基于免候选框的单阶段检测,SSD、YOLO系列都是典型的基于回归思想的单阶段检测方法。

YOLOv5 目标检测模型 2020年由Ultralytics发布的YOLOv5在网络轻量化 上贡献明显,检测速度更快也更加易于部署。与之前
版本不同,YOLOv5 实现了网络架构的系列化,分别 是YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l、
YOLOv5x。这5种模型的结构相似,通过改变宽度倍 数(Depth multiple)来改变卷积过程中卷积核的数量, 通 过 改 变 深 度 倍 数
(Width multiple) 来 改 变 BottleneckC3(带3个CBS模块的BottleneckCSP结构)中
C3的数量,从而实现不同网络深度和不同网络宽度之 间的组合,达到精度与效率的平衡。YOLOv5各版本性能如图所示:

在这里插入图片描述

模型结构图如下:

在这里插入图片描述

YOLOv5s 模型算法流程和原理

YOLOv5s模型主要算法工作流程原理:

(1) 原始图像输入部分加入了图像填充、自适应 锚框计算、Mosaic数据增强来对数据进行处理增加了 检测的辨识度和准确度。

(2) 主干网络中采用Focus结构和CSP1_X (X个残差结构) 结构进行特征提取。在特征生成部分, 使用基于SPP优化后的SPPF结构来完成。

(3) 颈部层应用路径聚合网络和CSP2_X进行特征融合。

(4) 使用GIOU_Loss作为损失函数。

关键代码:

6 数据集处理

获取摔倒数据集准备训练,如果没有准备好的数据集,可自己标注,但过程会相对繁琐

深度学习图像标注软件众多,按照不同分类标准有多中类型,本文使用LabelImg单机标注软件进行标注。LabelImg是基于角点的标注方式产生边界框,对图片进行标注得到xml格式的标注文件,由于边界框对检测精度的影响较大因此采用手动标注,并没有使用自动标注软件。

考虑到有的朋友时间不足,博主提供了标注好的数据集和训练好的模型,需要请联系。

数据标注简介

通过pip指令即可安装


pip install labelimg

在命令行中输入labelimg即可打开

在这里插入图片描述

打开你所需要进行标注的文件夹,点击红色框区域进行标注格式切换,我们需要yolo格式,因此切换到yolo

点击Create RectBo -> 拖拽鼠标框选目标 -> 给上标签 -> 点击ok

数据保存

点击save,保存txt。

在这里插入图片描述

7 模型训练

配置超参数
主要是配置data文件夹下的yaml中的数据集位置和种类:

在这里插入图片描述

配置模型
这里主要是配置models目录下的模型yaml文件,主要是进去后修改nc这个参数来进行类别的修改。

在这里插入图片描述

目前支持的模型种类如下所示:

在这里插入图片描述
训练过程
在这里插入图片描述

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/156108.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

印度网络安全:威胁与应对

随着今年过半,我们需要评估并了解不断崛起的网络威胁复杂性,这些威胁正在改变我们的数字景观。 从破坏性的网络钓鱼攻击到利用人工智能的威胁,印度的网络犯罪正在升级。然而,在高调的数据泄露事件风暴中,我们看到了政…

游戏反虚拟机检测方案

近年来,游戏市场高速发展,随之而来的还有图谋利益的游戏黑产。在利益吸引下,游戏黑产扩张迅猛,攻击趋势呈现出角度多样化的特点。 在这一趋势下,游戏安全防护的检测覆盖率显得尤为重要。如果游戏在某一环节出现被绕过…

Linux系统卡顿处理记录(Debian)

问题现象描述 现象linux操作系统卡顿(就是很慢),但是系统任然能够使用。 文章一步步的排查并且定位问题。 排查步骤 1. 使用top命令查看CPU是否占用过高。(未发现)排除问题 2. 使用df -h查看硬盘是否被占满。&#…

浏览器唤起钉钉 各项功能

浏览器唤起钉钉对应人员聊天 文档地址 https://open.dingtalk.com/document/client/unified-routing-protocol 唤起聊天 不过只能唤起叮叮的名片 id为叮叮号 <a href"dingtalk://dingtalkclient/action/sendmsg?dingtalk_id{id}"></a>id&#xff1a; …

Spark 9:Spark 新特性

Spark 3.0 新特性 Adaptive Query Execution 自适应查询(SparkSQL) 由于缺乏或者不准确的数据统计信息(元数据)和对成本的错误估算(执行计划调度)导致生成的初始执行计划不理想&#xff0c;在Spark3.x版本提供Adaptive Query Execution自适应查询技术&#xff0c;通过在”运行…

vite+vue3+ts中使用require.context | 报错require is not defined | 获取文件夹中的文件名

vitevue3ts中使用require.context|报错require is not defined|获取文件夹中的文件名 目录 vitevue3ts中使用require.context|报错require is not defined|获取文件夹中的文件名一、问题背景二、报错原因三、解决方法 一、问题背景 如题在vitevue3ts中使用required.context时报…

《UnityShader入门精要》学习1

读者可以在开源网站github&#xff08;https://github.com/candycat1992/Unity_Shaders_Book&#xff09;上下载本书的源代码。 第二章 渲染流水线 渲染流水线的最终目的在于生成或者说是渲染一张二维纹理&#xff0c;即我们在电脑屏幕上看到的所有效果&#xff0c;它的输入是…

【网络安全】「漏洞原理」(二)SQL 注入漏洞之理论讲解

前言 严正声明&#xff1a;本博文所讨论的技术仅用于研究学习&#xff0c;旨在增强读者的信息安全意识&#xff0c;提高信息安全防护技能&#xff0c;严禁用于非法活动。任何个人、团体、组织不得用于非法目的&#xff0c;违法犯罪必将受到法律的严厉制裁。 【点击此处即可获…

发送消息时序图

内窥镜消息队列发送消息原理 目的 有一个多线程的Java应用程序&#xff0c;使用消息队列来处理命令 时序图 startumlactor User participant "sendCmdWhiteBalance()" as Controller participant CommandConsumer participant MessageQueueUser -> Controller:…

【数据库】Sql Server数据迁移,处理自增字段赋值

给自己一个目标&#xff0c;然后坚持一段时间&#xff0c;总会有收获和感悟&#xff01; 在实际项目开发中&#xff0c;如果遇到高版本导入到低版本&#xff0c;或者低版本转高版本&#xff0c;那么就会出现版本不兼容无法导入&#xff0c;此时通过程序遍历创建表和添加数据方式…

开源音乐播放器!

导读音乐是生活的一部分。维基百科关于音乐发展历史的文章有这样一段不错的描述说&#xff1a;“全世界所有的人们&#xff0c;包括哪怕是最孤立、与世隔绝的部落&#xff0c;都会有自己的特色音乐……”好吧&#xff0c;我们开源人就构成了一个部落。我建议我们的“音乐形式”…

TCP/IP(十四)流量控制

一 流量控制 说明&#xff1a; 本文只是原理铺垫,没有用tcpdumpwiresahrk鲜活的案例讲解,后续补充 ① 基本概念 流量控制: TCP 通过接受方实际能接收的数据量来控制发送方的窗口大小 ② 正常传输过程 背景:1、客户端是接收方,服务端是发送方 --> 下载2、假设接收窗…

基于Vue+ELement实现增删改查案例与表单验证

目录 前言 一、增删改查案例的实现 1.查询 2.增加 3.修改 4.删除 5.增删改查效果演示 二、表单验证 1.在官网中找到表单---表单验证 2.定义规则 3.使用规则 前言 Element UI是一款基于Vue.js的组件库&#xff0c;提供了丰富的组件和功能&#xff0c;包括表单、按钮、…

mysql面试题28:MySQL的主从复制模式、MySQL主从复制的步骤、MySQL主从同步延迟的原因、MySQL主从同步延迟的解决办法

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:简单讲一下MySQL的主从复制模式 MySQL的主从复制(Master-Slave Replication)是一种数据库复制技术,用于将一个MySQL数据库服务器(主服务器)的…

nodejs+vue+elementui养老院老年人服务系统er809

“养老智慧服务平台”是运用nodejs语言和vue框架&#xff0c;以MySQL数据库为基础而发出来的。为保证我国经济的持续性发展&#xff0c;必须要让互联网信息时代在我国日益壮大&#xff0c;蓬勃发展。伴随着信息社会的飞速发展&#xff0c;养老智慧服务平台所面临的问题也一个接…

嵌入式面试常见问题(一)

目录 1.什么情况下会出现段错误&#xff1f; 2.swap() 函数为什么不能交换两个变量的值 3.一个函数有六个参数 分别放在哪个区&#xff1f; 4.定义一个变量&#xff0c;赋初值和不赋初值分别保存在哪个区&#xff1f; 5.linux查看端口状态的命令 6.结构体中->和.的区…

uniapp:幸运大转盘demo

<template><view class"index"><image src"../../static/img/158.png" mode"" class"banner"></image><view class"title">绿色积分加倍卡拿到手软</view><almost-lottery :lottery…

使用 L293D 电机驱动器 IC 和 Arduino 控制直流电机

如果您打算组装新的机器人朋友&#xff0c;您最终会想要学习如何控制直流电机。控制直流电机最简单且经济的方法是将 L293D 电机驱动器 IC 与 Arduino 连接。它可以控制两个直流电机的速度和旋转方向。 此外&#xff0c;它还可以控制单极步进电机&#xff08;如 28BYJ-48&#…

邮政编码,格式校验:@ZipCode(自定义注解)

目标 自定义一个用于校验邮政编码格式的注解ZipCode&#xff0c;能够和现有的 Validation 兼容&#xff0c;使用方式和其他校验注解保持一致&#xff08;使用 Valid 注解接口参数&#xff09;。 校验逻辑 有效格式 不能包含空格&#xff1b;应为6位数字&#xff1b; 不校验…

区块链在游戏行业的应用

区块链技术在游戏行业有许多潜在的应用&#xff0c;它可以改变游戏开发、发行和玩家交互的方式。以下是区块链技术在游戏行业的一些主要应用&#xff0c;希望对大家有所帮助。北京木奇移动技术有限公司&#xff0c;专业的软件外包开发公司&#xff0c;欢迎交流合作。 1.游戏资产…