绘制X-Bar-S和X-Bar-R图,监测过程,计算CPK过程能力指数

X-Bar-S图和X-Bar-R图是统计质量控制中常用的两种控制图,用于监测过程的稳定性和一致性。它们的主要区别在于如何计算和呈现数据的变化以及所关注的问题类型。

  1. X-Bar-S图(平均值与标准偏差图):

    • X-Bar代表样本均值,S代表样本标准偏差。
    • X-Bar-S图用于监测过程的平均值和变异性。
    • 过程中的每个样本都会测量,并计算出该样本的平均值(X-Bar)和标准偏差(S)。
    • 控制图上通常有两条中心线:一条代表平均值,另一条代表标准偏差。
    • X-Bar-S图适用于对过程均值和过程标准偏差都有关注的情况,例如,需要确保产品的尺寸和质量稳定。
  2. X-Bar-R图(平均值与范围图):

    • X-Bar代表样本均值,R代表样本范围。
    • X-Bar-R图主要用于监测过程的平均值和范围,而不是标准偏差。
    • 对每个样本进行测量,并计算出该样本的平均值(X-Bar)和范围(R,即最大值与最小值之差)。
    • 控制图上通常有两条中心线:一条代表平均值,另一条代表范围。
    • X-Bar-R图适用于关注过程的平均值,但不太关注过程的标准偏差的情况,例如,需要确保生产过程的平均值在目标值附近。

总之,X-Bar-S图和X-Bar-R图都用于监测过程的稳定性,但它们关注的参数不同。X-Bar-S图同时关注平均值和标准偏差,而X-Bar-R图关注平均值和样本范围。选择使用哪种图表取决于你对过程的关注点和需要监测的参数。

------------------------

下面是X-Bar-S图和X-Bar-R图的各自控制限计算公式:

X-Bar-S图的控制限计算公式:

  1. 上控制限(UCL)和下控制限(LCL)用于X-Bar图(平均值图):

    • UCL(X-Bar) = X-Double Bar + A3 * S-Bar
    • LCL(X-Bar) = X-Double Bar - A3 * S-Bar
      其中,X-Double Bar是所有样本平均值的平均值,A3是与样本容量相关的常数,S-Bar是所有样本标准偏差的平均值。
  2. 上控制限(UCL)和下控制限(LCL)用于S图(标准偏差图):

    • UCL(S) = B4 * S-Bar
    • LCL(S) = B3 * S-Bar
      其中,B3和B4是与样本容量相关的常数,S-Bar是所有样本标准偏差的平均值。

X-Bar-R图的控制限计算公式:

  1. 上控制限(UCL)和下控制限(LCL)用于X-Bar图(平均值图):

    • UCL(X-Bar) = X-Double Bar + A2 * R-Bar
    • LCL(X-Bar) = X-Double Bar - A2 * R-Bar
      其中,X-Double Bar是所有样本平均值的平均值,A2是与样本容量相关的常数,R-Bar是所有样本范围的平均值。
  2. 上控制限(UCL)和下控制限(LCL)用于R图(范围图):

    • UCL(R) = D4 * R-Bar
    • LCL(R) = D3 * R-Bar
      其中,D3和D4是与样本容量相关的常数,R-Bar是所有样本范围的平均值。

这些常数(如A2、B3、B4、D3和D4)取决于样本容量和所选的控制图类型,通常可以在统计参考表中找到相应的值。控制限的目标是帮助检测过程中任何异常或变化,以便及时采取纠正措施来维持过程的稳定性。

--------------

两种X-Bar控制图(X-Bar-S图和X-Bar-R图)的平均值图计算方法不同,是因为它们关注的参数和控制图的目的不同,这导致了不同的控制限计算方法。

  1. X-Bar-S图的平均值图(X-Bar图)

    • X-Bar-S图用于监测过程的平均值和标准偏差。它关注的是过程的整体平均水平以及过程中的变异性。
    • 平均值图的上控制限(UCL)和下控制限(LCL)计算方法包括平均值(X-Bar)和标准偏差(S-Bar)的组合,因为在X-Bar-S图中,两者都是关注的参数。
    • 控制限的目的是确保过程的平均值和标准偏差保持在可接受的范围内。
  2. X-Bar-R图的平均值图(X-Bar图)

    • X-Bar-R图用于监测过程的平均值和范围(即最大值与最小值之差)。它关注的是过程的平均水平和过程的范围变化。
    • 平均值图的上控制限(UCL)和下控制限(LCL)计算方法包括平均值(X-Bar)和范围(R-Bar)的组合,因为在X-Bar-R图中,这两个参数是关注的。
    • 控制限的目的是确保过程的平均值和范围保持在可接受的范围内。

因此,不同的控制图类型具有不同的控制限计算方法,以反映它们关注的参数和过程监测的目的。选择使用哪种图表取决于你对过程的关注点,例如,是更关注标准偏差还是范围的变化。

----------

X-Bar-R 控制图是一种用于监测过程稳定性和一致性的质量控制工具。首先,我们需要计算每组数据的平均值和范围,然后绘制控制图,并计算CPK以及合格率。

  1. 计算每组数据的平均值和范围: 对于每组数据,计算平均值和范围。范围(R)是每组数据中最大值与最小值的差异。

  2. 计算 X-Bar 控制图: a. 计算所有平均值的平均值(X-双点中心线)。 b. 绘制 X-Bar 控制图,将每组的平均值分布在图上。

  3. 计算 R 控制图: a. 计算所有范围值的平均值(R-双点中心线)。 b. 绘制 R 控制图,将每组的范围值分布在图上。

  4. 计算控制限: a. 计算 X-Bar 控制图的控制限,可以使用标准的控制图公式,通常为 X-Bar 的平均值加减 3 倍 R 的平均值。 b. 计算 R 控制图的控制限,通常为 R 的平均值乘以一个常数因子。

  5. 计算CPK(过程能力指数): CPK = min[(USL - X-双点中心线) / (3 * 标准差), (X-双点中心线 - LSL) / (3 * 标准差)] 其中,USL是产品规格上限,LSL是产品规格下限。

  6. sigma 表示过程的标准差,它是通过控制图中的平均范围R 来估计的。
    在控制图中,R 通常代表一组样本数据的范围,而 d2 是控制图常数,它是用于校正范围以估计标准差的。
    sigma 被计算为:sigma = (平均范围R) / d2

  7. 计算产品规格上下限间的合格率: 使用正态分布表或统计软件,根据CPK值和规格上下限,计算出合格率。

这些步骤需要一些数据处理和图表绘制,最好使用统计软件或工具来执行。确保准确地计算平均值、范围、控制限、CPK,以及合格率。

---------- 

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import scipy.stats as stats
plt.rcParams['font.sans-serif'] = ['SimHei']  # 防止中文标签乱码
plt.rcParams['axes.unicode_minus'] = Falsedf = pd.read_excel('GuanZi1011.xlsx') #<class 'pandas.core.frame.DataFrame'>
# print(data)# print(df.columns)
# print(df.info)# 计算每组的平均值(X-Bar)
x_bar = df.mean(axis=0)  # pandas Series # 计算每组的样本标准差(S)
s = df.std(axis=0, ddof=1)# # [10 rows x 10 columns] 10组,10个数据/组
# 固定的A2、B3、B4值
A3 = 0.975
B3 = 0.284
B4 = 1.716# 计算X-Bar控制图的控制限
X_Double_Bar = x_bar.mean()
S_Bar = s.mean()UCL_X_Bar = X_Double_Bar + A3 * S_Bar
LCL_X_Bar = X_Double_Bar - A3 * S_Barprint(f"UCL_X_Bar: {UCL_X_Bar}",f"LCL_X_Bar: {LCL_X_Bar}")# 计算S控制图的控制限
UCL_S = B4 * S_Bar
LCL_S = B3 * S_Bar# 创建X-Bar 控制图,添加上下控制限
plt.figure(figsize=(5.3, 6))
plt.subplot(2, 1, 1)
plt.plot(x_bar, marker='o')
plt.axhline(X_Double_Bar, color='r', linestyle='--', label='Overall Mean')
plt.axhline(UCL_X_Bar, color='g', linestyle='--', label='UCL')
plt.axhline(LCL_X_Bar, color='b', linestyle='--', label='LCL')
plt.title('X-Bar Control Chart')
# plt.xlabel('Sample Group')
plt.ylabel('X-Bar')
plt.legend()# 创建S 控制图,添加上下控制限
plt.subplot(2, 1, 2)
plt.plot(s, marker='o')
plt.axhline(S_Bar, color='r', linestyle='--', label='Overall Mean')
plt.axhline(UCL_S, color='g', linestyle='--', label='UCL')
plt.axhline(LCL_S, color='b', linestyle='--', label='LCL')
plt.title('S Control Chart')
# plt.xlabel('Sample Group')
plt.ylabel('S')
plt.legend()plt.tight_layout()
plt.show()# X-Bar-S图 控制限计算公式:
# UCL(X-Bar) = X-Double Bar + A3 * S-Bar
# LCL(X-Bar) = X-Double Bar - A3 * S-Bar
# UCL(S) = B4 * S-Bar
# LCL(S) = B3 * S-Bar# X-Bar-R图的控制限计算公式:
# UCL(X-Bar) = X-Double Bar + A2 * R-Bar
# LCL(X-Bar) = X-Double Bar - A2 * R-Bar 
# UCL(R) = D4 * R-Bar
# LCL(R) = D3 * R-Bar

import numpy as np
import matplotlib.pyplot as plt# 生成10组每组10个数据的示例数据(总共100个数据)
np.random.seed(0)
data = np.random.randn(10, 10)# 计算每组的平均值(X-Bar)
x_bar = np.mean(data, axis=1)# 计算每组的极差(R)
r = np.ptp(data, axis=1)# 固定的A2、D4、D3值
A2 = 0.308
D4 = 1.777
D3 = 0.223# 计算X-Bar控制图的控制限
X_Double_Bar = np.mean(x_bar)
R_Bar = np.mean(r)
UCL_X_Bar = X_Double_Bar + A2 * R_Bar
LCL_X_Bar = X_Double_Bar - A2 * R_Bar# 计算R控制图的控制限
UCL_R = D4 * R_Bar
LCL_R = D3 * R_Bar# 创建X-Bar 控制图,添加上下控制限
plt.figure(figsize=(12, 6))
plt.subplot(2, 1, 1)
plt.plot(x_bar, marker='o')
plt.axhline(X_Double_Bar, color='r', linestyle='--', label='Overall Mean')
plt.axhline(UCL_X_Bar, color='g', linestyle='--', label='UCL')
plt.axhline(LCL_X_Bar, color='b', linestyle='--', label='LCL')
plt.title('X-Bar Control Chart')
plt.xlabel('Sample Group')
plt.ylabel('X-Bar')
plt.legend()# 创建R 控制图,添加上下控制限
plt.subplot(2, 1, 2)
plt.plot(r, marker='o')
plt.axhline(R_Bar, color='r', linestyle='--', label='Overall Mean')
plt.axhline(UCL_R, color='g', linestyle='--', label='UCL')
plt.axhline(LCL_R, color='b', linestyle='--', label='LCL')
plt.title('R Control Chart')
plt.xlabel('Sample Group')
plt.ylabel('R')
plt.legend()plt.tight_layout()
plt.show()

 绘制X-Bar-R图,监测过程,计算CPK过程能力指数

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
import pandas as pdplt.rcParams['font.sans-serif'] = ['SimHei']  # 防止中文标签乱码
plt.rcParams['axes.unicode_minus'] = False# 替换下面的数据为你的实际数据
data = pd.read_excel('GuanZi1011.xlsx')# 计算每组样本的平均值
x_bar = data.mean(axis=0)  # Series# 计算每组样本的范围R
r = data.max(axis=0) - data.min(axis=0)x_bar_avg = np.mean(x_bar)
r_avg = np.mean(r)print(f'x_bar_avg: {x_bar_avg}')
print(f'r_avg: {r_avg}')# X-Bar-R图的控制系数   # [10 rows x 10 columns] 
d2 = 3.078  # R控制图的常数,可以根据样本大小查表获取
A2 = 0.308  # X-Bar控制图的常数,可以根据样本大小查表获取
D4 = 1.777  # R控制图的常数,可以根据样本大小查表获取
D3 = 0.223  # R控制图的常数,可以根据样本大小查表获取USL = 5.1  # 规格上限
LSL = 4.9  # 规格下限# sigma 表示过程的标准差,它是通过控制图中的平均范围R 来估计的。
# 在控制图中,R 通常代表一组样本数据的范围,而 d2 是控制图常数,它是用于校正范围以估计标准差的。
# sigma 被计算为:sigma = (平均范围R) / d2
sigma = r_avg / d2# Z 分数(即标准分数,Z = (x - μ) / σ)根据数据点与一组点的平均值和标准偏差之间的关系来描述数据点
Zscore = min((USL - x_bar_avg) / sigma, (x_bar_avg - LSL) / sigma)# 计算CPK(过程能力指数):
# CPK = min[(USL - X-双点中心线) / (3 * 标准差), (X-双点中心线 - LSL) / (3 * 标准差)]
# 其中,USL是产品规格上限,LSL是产品规格下限。
cpk = min((USL - x_bar_avg) / (3 * sigma), (x_bar_avg - LSL) / (3 * sigma))
# 计算合格率
z_upper = (USL - x_bar_avg) / (sigma)
z_lower = (LSL - x_bar_avg) / (sigma)
cpk_area = norm.cdf(z_upper,0,1) - norm.cdf(z_lower,0,1)
cp= (USL-LSL) / (6* sigma) # 规格范围相对于过程的变异性有多宽
ppm = (1 - cpk_area) * 1000000  ## 换算成每百万机会的不合格品数print(f'sigma: {sigma}')
print(f'Zscore: {Zscore}')
print(f'CPK: {cpk}')
print(f"cpk_area:{cpk_area}")
print("CP:", cp)
print(f'PPM: {ppm}')# X-Bar-R图的控制限计算公式:
# UCL(X-Bar) = X-Double Bar + A2 * R-Bar
# LCL(X-Bar) = X-Double Bar - A2 * R-Bar 
# UCL(R) = D4 * R-Bar
# LCL(R) = D3 * R-Barx_bar_UCL = x_bar_avg + A2 * r_avg
x_bar_LCL = x_bar_avg - A2 * r_avgr_UCL = D4 * r_avg
r_LCL = D3 * r_avg# 绘制X-Bar控制图
plt.figure(figsize=(7, 6))
plt.subplot(2, 1, 1)
plt.plot(x_bar, marker='o')
plt.axhline(x_bar_avg, color='r', linestyle='--', label='X-Bar Center Line')
plt.axhline(x_bar_UCL, color='g', linestyle='--', label='X-Bar UCL')
plt.axhline(x_bar_LCL, color='g', linestyle='--', label='X-Bar LCL')
plt.title('X-Bar Control Chart')
plt.legend()
plt.grid()# 绘制R控制图
plt.subplot(2, 1, 2)
plt.plot(r, marker='o')
plt.axhline(r_avg, color='r', linestyle='--', label='R Center Line')
plt.axhline(r_UCL, color='g', linestyle='--', label='R UCL')
plt.axhline(r_LCL, color='g', linestyle='--', label='R LCL')
plt.title('R Control Chart')
plt.legend()
plt.grid()
plt.show()

# X-Bar-S图 控制限计算公式:
# UCL(X-Bar) = X-Double Bar + A3 * S-Bar
# LCL(X-Bar) = X-Double Bar - A3 * S-Bar
# UCL(S) = B4 * S-Bar
# LCL(S) = B3 * S-Bar

# X-Bar-R图的控制限计算公式:
# UCL(X-Bar) = X-Double Bar + A2 * R-Bar
# LCL(X-Bar) = X-Double Bar - A2 * R-Bar 
# UCL(R) = D4 * R-Bar
# LCL(R) = D3 * R-Bar

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/156946.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HttpServletRequest对象与RequestDispatcher对象

一、HttpServletRequest对象 1.介绍 在Servlet API中&#xff0c;定义了一个HttpServletRequest接口&#xff0c;它继承自ServletRequest接口&#xff0c;专门用来封装HTTP请求消息。由于HTTP请求消息分为请求行、请求消息头和请求消息体三部分&#xff0c;因此&#xff0c;在…

ODrive移植keil(五)—— 开环控制和电流变换

目录 一、开环控制1.1、控制原理1.2、硬件接线1.3、代码说明1.4、程序演示1.5、程序架构的体现 二、电流变换2.1、理论说明2.2、代码说明 ODrive、VESC和SimpleFOC 教程链接汇总&#xff1a;请点击 一、开环控制 在SimpleFOC系列中有开环控制的教程&#xff0c;SimpleFOC移植S…

《Java极简设计模式》第08章:外观模式(Facade)

作者&#xff1a;冰河 星球&#xff1a;http://m6z.cn/6aeFbs 博客&#xff1a;https://binghe.gitcode.host 文章汇总&#xff1a;https://binghe.gitcode.host/md/all/all.html 源码地址&#xff1a;https://github.com/binghe001/java-simple-design-patterns/tree/master/j…

SpringBoot篇之集成Mybatis-plus

目录 前言一、Mybatis-plus介绍1.1 官网 二、代码生成器总结 前言 大家好&#xff0c;我是AK&#xff0c;整理的SpringBoot集成Mybatis-plus以及代码生成器的使用&#xff0c;时间原因简单的整理下&#xff0c;有问题的可以评论区见或私信我。 一、Mybatis-plus介绍 1.1 官网…

完整教程:Java+Vue+Websocket实现OSS文件上传进度条功能

引言 文件上传是Web应用开发中常见的需求之一&#xff0c;而实时显示文件上传的进度条可以提升用户体验。本教程将介绍如何使用Java后端和Vue前端实现文件上传进度条功能&#xff0c;借助阿里云的OSS服务进行文件上传。 技术栈 后端&#xff1a;Java、Spring Boot 、WebSock…

23种经典设计模式:单例模式篇(C++)

前言&#xff1a; 博主将从此篇单例模式开始逐一分享23种经典设计模式&#xff0c;并结合C为大家展示实际应用。内容将持续更新&#xff0c;希望大家持续关注与支持。 什么是单例模式&#xff1f; 单例模式是设计模式的一种&#xff08;属于创建型模式 (Creational Pa…

PHP 员工工资管理系统mysql数据库web结构apache计算机软件工程网页wamp

一、源码特点 PHP 员工工资管理系统是一套完善的web设计系统&#xff0c;对理解php编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。 php员工工资管理系统 代码 https://download.csdn.net/download/qq_41221322/884215…

python+opencv+深度学习实现二维码识别 计算机竞赛

0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; pythonopencv深度学习实现二维码识别 &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&#xff1a;3分工作量&#xff1a;3分创新点&#xff1a;3分 该项目较为新颖&…

Python高效实现网站数据挖掘

在当今互联网时代&#xff0c;SEO对于网站的成功至关重要。而Python爬虫作为一种强大的工具&#xff0c;为网站SEO带来了革命性的改变。通过利用Python爬虫&#xff0c;我们可以高效地实现网站数据挖掘和关键词分析&#xff0c;从而优化网站的SEO策略。本文将为您详细介绍如何利…

竞赛选题 深度学习 机器视觉 车位识别车道线检测 - python opencv

0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 深度学习 机器视觉 车位识别车道线检测 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学长非常推荐&#xff01; &#x1f947;学长这里给一个题目综合评分(每项满分5分) …

KubeVela跨地域的多集群管理方案

随着公司全球化战略的布局,业务呈点状分布在亚太、美东、欧洲等多个地域,云原生kubevela在跨地域多集群管控方面也遇到网络上的互通问题。 在公司网络规划上只允许一个区域的一个VPC跟另一个区域的一个VPC打通,同区域不同机房的网络都可以打通的网络架构基础上,由于一个区…

生产级Stable Diffusion AI服务部署指南【BentoML】

在本文中&#xff0c;我们将完成 BentoML 和 Diffusers 库之间的集成过程。 通过使用 Stable Diffusion 2.0 作为案例研究&#xff0c;你可以了解如何构建和部署生产就绪的 Stable Diffusion 服务。 推荐&#xff1a;用 NSDT编辑器 快速搭建可编程3D场景 Stable Diffusion 2.0 …

睿趣科技:未来抖音开网店还有前景吗

随着科技的快速发展&#xff0c;电商平台已经成为了人们生活中不可或缺的一部分。在中国&#xff0c;抖音作为一个短视频平台&#xff0c;近年来迅速崛起&#xff0c;吸引了大量的用户和商家。那么&#xff0c;在未来&#xff0c;抖音是否还能为商家提供一个有效的电商平台呢?…

logicFlow 流程图编辑工具使用及开源地址

一、工具介绍 LogicFlow 是一款流程图编辑框架&#xff0c;提供了一系列流程图交互、编辑所必需的功能和灵活的节点自定义、插件等拓展机制。LogicFlow 支持前端研发自定义开发各种逻辑编排场景&#xff0c;如流程图、ER 图、BPMN 流程等。在工作审批配置、机器人逻辑编排、无…

VScode Invoke-Expression: 无法将参数绑定到参数“Command”,因为该参数为空字符串

打开vscode时发生错误&#xff1a;Invoke-Expression : 无法将参数绑定到参数“Command”&#xff0c;因为该参数为空字符串。 解决办法&#xff1a;在anaconda prompt base中输入&#xff1a; conda upgrade -n base -c defaults --override-channels conda

MySQL常用脚本

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是Java方文山&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f31f;推荐给大家我的专栏《ELement》。&#x1f3af;&#x1f3af; &#x1…

Red Giant Trapcode Suite 红巨星粒子插件

Red Giant Trapcode Suite是一款用于在After Effects中模拟和建模3D粒子和效果的软件&#xff0c;由Red Giant Software公司开发。 该软件包包含11种不同的工具&#xff0c;可以帮助用户模拟火、水、烟、雪等粒子效果&#xff0c;以及创建有机视觉效果和3D元素。它还支持在AE与…

Jetson Orin NX 开发指南(9): MAVROS 的安装与配置

一、前言 由于 Jetson 系列开发板常作为自主无人机的机载电脑&#xff0c;而无人机硬件平台如 PX4 和 ArduPilot 等通过 MAVLink 进行发布无人机状态和位姿等信息&#xff0c;要实现机载电脑与 MAVLink 的通信&#xff0c;必须借助 Mavros 功能包&#xff0c;因此&#xff0c;…

PG14归档失败解决办法archiver failed on wal_lsn

问题描述 昨晚RepmgrPG14主备主库因wal日志撑爆磁盘&#xff0c;删除主库过期wal文件重做备库后上午进行主备状态巡查&#xff0c;主库向备库发送wal文件正常&#xff0c;但是查主库状态时发现显示有1条归档失败的记录。 postgres: archiver failed on 000000010000006F000000…

Tomcat的安装和配置

一.Tomcat下载&#xff1a;去Tomcat官网地址 在左侧Download中选择你需要下载的版本&#xff0c;这里我选择Tomcat9 根据电脑系统是32位还是64位选择&#xff0c;这里我选择64-bit Windows zip&#xff0c;点击即可下载 下载后直接解压&#xff0c;这里我解压在E盘的computer…