项目的虚拟环境的搭建与pytorch依赖的下载

文章目录

  • 配置环境

pytorch的使用需要安装对应的cuda

在PyTorch中使用CUDA, pytorch与cuda不同版本对应安装指南,查看CUDA版本,安装对应版本pytorch

【超详细教程】2024最新Pytorch安装教程(同时讲解安装CPU和GPU版本)

配置环境

首先先创建虚拟环境

conda create --name <env_name> python=<python_version> 

激活虚拟环境

conda activate <env_name>

下载对应版本的pytorch

并不建议不查看对应的pytorch与你的cuda版本是否匹配就直接下载,这样会导致后续出现不适配的问题

https://pytorch.org/get-started/previous-versions/

在这个网站,找到对应版本的下载的命令,注意要与你的cuda适配

使用命令行检验

import torch# 检查版本和CUDA可用性
print(f"PyTorch Version: {torch.__version__}")
print(f"CUDA Available: {torch.cuda.is_available()}")
if torch.cuda.is_available():print(f"CUDA Version: {torch.version.cuda}")
PyTorch Version: 1.13.1
CUDA Available: True
CUDA Version: 11.7

Pytorch也有相关的拓展库,当需要安装的时候,可以采用多种方式安装

# 但是我在使用下面的命令安装的时候,安装并不成功
pip install torch-cluster -f https://data.pyg.org/whl/torch-1.10.1+cu117.html
pip install torch-scatter==2.0.9 -f https://data.pyg.org/whl/torch-1.10.1+cu117.html
pip install torch-sparse==0.6.12 -f https://data.pyg.org/whl/torch-1.10.1+cu117.html
pip install torch-geometric==2.0.3

出现下面的报错

  ERROR: Failed building wheel for torch-clusterRunning setup.py clean for torch-cluster
Failed to build torch-cluster
ERROR: ERROR: Failed to build installable wheels for some pyproject.toml based projects (torch-cluster)

参考资料:如何解决上面的问题?我们考虑直接在将库下载在本地,然后通过命令行进行安装

在这里插入图片描述

cpu 是支持cpu,否则cu 就是GPU
具体操作参考下面这个解决torch-cluster等无法下载的问题

解决torch-cluster等无法下载的问题
已解决python setup.py bdist_wheel did not run successfully.

除了对应的cuda和torch版本的问题,可能还存在其他问题

退出虚拟环境

conda deactivate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/15794.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[2025年最新]2024.3版本idea无法安装插件问题解决

背景 随着大模型的持续发展&#xff0c;特别年前年后deepseek的优异表现&#xff0c;编程过程中&#xff0c;需要解决ai来辅助编程&#xff0c;因此需要安装一些大模型插件 问题描述 在线安装插件的时候会遇到以下问题&#xff1a; 1.数据一直在加载&#xff0c;加载的很满 2.点…

怎么查看电脑显存大小(查看电脑配置)

这里提供一个简单的方法查看 winr打开cmd 终端输入dxdiag进入DirectX 点击显示查看设备的显示内存&#xff08;VRAM&#xff09; 用这个方法查看电脑配置和显存是比较方便的 dxdiag功能 Dxdiag是Windows的DirectX诊断工具&#xff0c;其主要作用包括但不限于以下几点&#…

拾取丢弃物品(结构体/数组/子UI/事件分发器)

实现&#xff1a;场景中随机生成几种物品&#xff0c;玩家可以拾取这些物品&#xff0c;也可丢弃已经拾取到的物品。 拾取丢弃物品时UI能实时更新玩家身上的物品量。 一.物品信息的创建 1.枚举 物品名 2.结构体表示物体属性 3.物品缩略图&#xff08;缩略图大小要为2的n次方…

KITE提示词框架:引导大语言模型的高效新工具

大语言模型的应用日益广泛。然而&#xff0c;如何确保这些模型生成的内容在AI原生应用中符合预期&#xff0c;仍是一个需要不断探索的问题。以下内容来自于《AI 原生应用开发&#xff1a;提示工程原理与实战》一书&#xff08;京东图书&#xff1a;https://item.jd.com/1013604…

性能优化中的系统架构优化

系统架构优化是性能优化的一个重要方面&#xff0c;它涉及到对整个IT系统或交易链上各个环节的分析与改进。通过系统架构优化&#xff0c;可以提高系统的响应速度、吞吐量&#xff0c;并降低各层之间的耦合度&#xff0c;从而更好地应对市场的变化和需求。业务增长导致的性能问…

【学习笔记】计算机网络(三)

第3章 数据链路层 文章目录 第3章 数据链路层3.1数据链路层的几个共同问题3.1.1 数据链路和帧3.1.2 三个基本功能3.1.3 其他功能 - 滑动窗口机制 3.2 点对点协议PPP(Point-to-Point Protocol)3.2.1 PPP 协议的特点3.2.2 PPP协议的帧格式3.2.3 PPP 协议的工作状态 3.3 使用广播信…

机器学习 - 理解偏差-方差分解

为了避免过拟合&#xff0c;我们经常会在模型的拟合能力和复杂度之间进行权衡。拟合能力强的模型一般复杂度会比较高&#xff0c;容易导致过拟合。相反&#xff0c;如果限制模型的复杂度&#xff0c;降低其拟合能力&#xff0c;又可能会导致欠拟合。因此&#xff0c;如何在模型…

【STM32】ADC

本次实现的是ADC实现数字信号与模拟信号的转化&#xff0c;数字信号时不连续的&#xff0c;模拟信号是连续的。 1.ADC转化的原理 模拟-数字转换技术使用的是逐次逼近法&#xff0c;使用二分比较的方法来确定电压值 当单片机对应的参考电压为3.3v时&#xff0c;0~ 3.3v(模拟信号…

DeepSeek 助力 Vue 开发:打造丝滑的步骤条

前言&#xff1a;哈喽&#xff0c;大家好&#xff0c;今天给大家分享一篇文章&#xff01;并提供具体代码帮助大家深入理解&#xff0c;彻底掌握&#xff01;创作不易&#xff0c;如果能帮助到大家或者给大家一些灵感和启发&#xff0c;欢迎收藏关注哦 &#x1f495; 目录 Deep…

基于Python的人工智能驱动基因组变异算法:设计与应用(下)

3.3.2 数据清洗与预处理 在基因组变异分析中,原始数据往往包含各种噪声和不完整信息,数据清洗与预处理是确保分析结果准确性和可靠性的关键步骤。通过 Python 的相关库和工具,可以有效地去除噪声、填补缺失值、标准化数据等,为后续的分析提供高质量的数据基础。 在基因组…

elasticsearch安装插件analysis-ik分词器(深度研究docker内elasticsearch安装插件的位置)

最近在学习使用elasticsearch&#xff0c;但是在安装插件ik的时候遇到许多问题。 所以在这里开始对elasticsearch做一个深度的研究。 首先提供如下链接&#xff1a; https://github.com/infinilabs/analysis-ik/releases 我们下载elasticsearch-7-17-2的Linux x86_64版本 …

linux部署ollama+deepseek+dify

Ollama 下载源码 curl -L https://ollama.com/download/ollama-linux-amd64.tgz -o ollama-linux-amd64.tgz sudo tar -C /usr -xzf ollama-linux-amd64.tgz启动 export OLLAMA_HOST0.0.0.0:11434 ollama serve访问ip:11434看到即成功 Ollama is running 手动安装deepseek…

力扣 单词拆分

动态规划&#xff0c;字符串截取&#xff0c;可重复用&#xff0c;集合类。 题目 单词可以重复使用&#xff0c;一个单词可用多次&#xff0c;应该是比较灵活的组合形式了&#xff0c;可以想到用dp&#xff0c;遍历完单词后的状态的返回值。而这里的wordDict给出的是list&…

【JVM详解二】常量池

一、常量池概述 JVM的常量池主要有以下几种&#xff1a; class文件常量池运行时常量池字符串常量池基本类型包装类常量池 它们相互之间关系大致如下图所示&#xff1a; 每个 class 的字节码文件中都有一个常量池&#xff0c;里面是编译后即知的该 class 会用到的字面量与符号引…

企业数据集成案例:吉客云销售渠道到MySQL

测试-查询销售渠道信息-dange&#xff1a;吉客云数据集成到MySQL的技术案例分享 在企业的数据管理过程中&#xff0c;如何高效、可靠地实现不同系统之间的数据对接是一个关键问题。本次我们将分享一个具体的技术案例——通过轻易云数据集成平台&#xff0c;将吉客云中的销售渠…

CTFHub-RCE系列wp

目录标题 引言什么是RCE漏洞 eval执行文件包含文件包含php://input读取源代码远程包含 命令注入无过滤过滤cat过滤空格过滤目录分隔符过滤运算符综合过滤练习 引言 题目共有如下类型 什么是RCE漏洞 RCE漏洞&#xff0c;全称是Remote Code Execution漏洞&#xff0c;翻译成中文…

深度学习之神经网络框架搭建及模型优化

神经网络框架搭建及模型优化 目录 神经网络框架搭建及模型优化1 数据及配置1.1 配置1.2 数据1.3 函数导入1.4 数据函数1.5 数据打包 2 神经网络框架搭建2.1 框架确认2.2 函数搭建2.3 框架上传 3 模型优化3.1 函数理解3.2 训练模型和测试模型代码 4 最终代码测试4.1 SGD优化算法…

STM32自学记录(十)

STM32自学记录 文章目录 STM32自学记录前言一、USART杂记二、实验1.学习视频2.复现代码 总结 前言 USART 一、USART杂记 通信接口&#xff1a;通信的目的&#xff1a;将一个设备的数据传送到另一个设备&#xff0c;扩展硬件系统。 通信协议&#xff1a;制定通信的规则&#x…

Linux --- 如何安装Docker命令并且使用docker安装Mysql【一篇内容直接解决】

目录 安装Docker命令 1.卸载原有的Docker&#xff1a; 2.安装docker&#xff1a; 3.启动docker&#xff1a; 4.配置镜像加速&#xff1a; 使用Docker安装Mysql 1.上传文件&#xff1a; 2.创建目录&#xff1a; 3.运行docker命令&#xff1a; 4.测试&#xff1a; 安装…

Linux磁盘空间使用率100%(解决删除文件后还是显示100%)

本文适用于&#xff0c;删除过了对应的数据文件&#xff0c;查看还是显示使用率100%的情况 首先使用df -h命令查看各个扇区所占用的情况 一、先对系统盘下所有文件大小进行统计&#xff0c;是否真的是数据存储以达到了磁盘空间 在对应的扇区路径下使用du -sh * | sort -hr 命…