springcloud----检索中间件 ElasticSearch 分布式场景的运用

如果对es的基础知识有不了解的可以看
es看这个文章就会使用了

1.分布式集群场景下的使用

单机的elasticsearch做数据存储,必然面临两个问题:海量数据存储问题、单点故障问题。

  • 海量数据存储问题:将索引库从逻辑上拆分为N个分片(shard),存储到多个节点
  • 单点故障问题:将分片数据在不同节点备份(replica )

ES集群相关概念:

  • 集群(cluster):一组拥有共同的 cluster name 的 节点。

  • 节点(node) :集群中的一个 Elasticearch 实例

  • 分片(shard):索引可以被拆分为不同的部分进行存储,称为分片。在集群环境下,一个索引的不同分片可以拆分到不同的节点中

    解决问题:数据量太大,单点存储量有限的问题。

在这里插入图片描述

此处,我们把数据分成3片:shard0、shard1、shard2

  • 主分片(Primary shard):相对于副本分片的定义。

  • 副本分片(Replica shard)每个主分片可以有一个或者多个副本,数据和主分片一样。

数据备份可以保证高可用,但是每个分片备份一份,所需要的节点数量就会翻一倍,成本实在是太高了!

为了在高可用和成本间寻求平衡,我们可以这样做:

  • 首先对数据分片,存储到不同节点
  • 然后对每个分片进行备份,放到对方节点,完成互相备份

这样可以大大减少所需要的服务节点数量,如图,我们以3分片,每个分片备份一份为例:

在这里插入图片描述

现在,每个分片都有1个备份,存储在3个节点:

  • node0:保存了分片0和1
  • node1:保存了分片0和2
  • node2:保存了分片1和2
    这样单一结点就算宕机,也可以备用

2.0.搭建ES集群

2.部署es集群

我们会在单机上利用docker容器(docker容器之间相互独立)运行多个es实例来模拟es集群。不过生产环境推荐大家每一台服务节点仅部署一个es的实例。

部署es集群可以直接使用docker-compose来完成,但这要求你的Linux虚拟机至少有4G的内存空间

2.1.创建es集群

首先编写一个docker-compose文件(yml或者yaml),内容如下:

  • 9200端口已经在之前的结点中使用了,要么停止要么改端口,这三个结点都没有设置插件数据卷,实际开发记得指明
    • discovery.seed_hosts 这里都是同一网络 ,实际开发中不同结点都是在不同网络机器上 比如 - discovery.seed_hosts=Machine1_IP:9200,Machine3_IP:9200
version: '2.2'
services:es01:image: docker.elastic.co/elasticsearch/elasticsearch:7.15.0container_name: es01environment:- node.name=es01- cluster.name=es-docker-cluster- discovery.seed_hosts=es02,es03- cluster.initial_master_nodes=es01,es02,es03- "ES_JAVA_OPTS=-Xms512m -Xmx512m"volumes:- data01:/usr/share/elasticsearch/dataports:- 9210:9200networks:- elastices02:image: docker.elastic.co/elasticsearch/elasticsearch:7.15.0container_name: es02environment:- node.name=es02- cluster.name=es-docker-cluster- discovery.seed_hosts=es01,es03- cluster.initial_master_nodes=es01,es02,es03- "ES_JAVA_OPTS=-Xms512m -Xmx512m"volumes:- data02:/usr/share/elasticsearch/dataports:- 9201:9200networks:- elastices03:image: docker.elastic.co/elasticsearch/elasticsearch:7.15.0container_name: es03environment:- node.name=es03- cluster.name=es-docker-cluster- discovery.seed_hosts=es01,es02- cluster.initial_master_nodes=es01,es02,es03- "ES_JAVA_OPTS=-Xms512m -Xmx512m"volumes:- data03:/usr/share/elasticsearch/datanetworks:- elasticports:- 9202:9200
volumes:data01:driver: localdata02:driver: localdata03:driver: localnetworks:elastic:driver: bridge

我的镜像名
在这里插入图片描述

es运行需要修改一些linux系统权限,修改/etc/sysctl.conf文件

vi /etc/sysctl.conf

添加下面的内容:

vm.max_map_count=262144

然后执行命令,让配置生效:

sysctl -p

在这里插入图片描述

在docker-c通过docker-compose启动集群:

docker-compose up -d

如果报错 bootstrap checks failed. You must address the points described in the following [1] lines before starting Elasticsearch.
bootstrap check failure [1] of [1]: max virtual memory areas vm.max_map_count [65530] is too low, increase to at least [262144]
那么说明是内存警告问题 错误消息指出虚拟内存区域的 vm.max_map_count 参数设置得太低。

检查当前的 vm.max_map_count 值:运行以下命令来检查当前值:

sysctl vm.max_map_count

如果当前值低于 262144,那么你需要增加它。

增加 vm.max_map_count 的值:你可以使用以下命令来增加虚拟内存区域的值:

sudo sysctl -w vm.max_map_count=262144

这会立即更改 vm.max_map_count 的值,但在系统重新启动后会重置为默认值。如果要永久更改此设置,你需要编辑 /etc/sysctl.conf 或 /etc/sysctl.d/ 下的配置文件,并添加或修改以下行:

vm.max_map_count=262144

然后保存文件并重新加载配置:

sudo sysctl -p

重新启动 Elasticsearch:一旦你增加了 vm.max_map_count 的值,重新启动 Elasticsearch,问题应该得到解决。

启动成功
在这里插入图片描述

2.2.集群状态监控

kibana可以监控es集群,不过新版本需要依赖es的x-pack 功能并且默认是监控但点es,配置比较复杂。

这里推荐使用cerebro来监控es集群状态,官方网址:https://github.com/lmenezes/cerebro

解压即可使用,非常方便。

解压好的目录如下:

在这里插入图片描述

进入对应的bin目录:

在这里插入图片描述

双击其中的cerebro.bat文件即可启动服务。

访问http://localhost:9000 即可进入管理界面:

在这里插入图片描述

输入你的elasticsearch的任意节点的地址和端口,点击connect即可:

在这里插入图片描述

绿色的条,代表集群处于绿色(健康状态)。

图标星星是实的是当前主节点,其他的是备用结点
在这里插入图片描述

2.3.创建索引库

1)利用kibana的DevTools创建索引库

(这里集群不使用这种方式)

在DevTools中输入指令:

PUT /itcast
{"settings": {"number_of_shards": 3, // 分片数量"number_of_replicas": 1 // 副本数量},"mappings": {"properties": {// mapping映射定义 ...}}
}

2)利用cerebro创建索引库

利用cerebro还可以创建索引库:

在这里插入图片描述

172是我的虚拟机所在的虚拟地址在这里插入图片描述

填写索引库信息:

在这里插入图片描述

  • 选项分别是索引名 几个分片 几个备份
    点击右下角的create按钮:

2.4.查看分片效果

回到首页,即可查看索引库分片效果:

首页可以看到索引数据
在这里插入图片描述
索引存储分为三个分片每个文档分片备份一份所以是6个数据,点击任意分片就可以看到索引信息
在这里插入图片描述

这样就可以保证任意结点宕机 ,其他结点把备份数据传递给宕机接结点

3.0.集群脑裂问题

3.1.集群职责划分

elasticsearch中集群节点有不同的职责划分:

在这里插入图片描述

默认情况下,集群中的任何一个节点都同时具备上述四种角色。

但是真实的集群一定要将集群职责分离:

  • master节点:对CPU要求高,但是内存要求第
  • data节点:对CPU和内存要求都高
  • coordinating节点:对网络带宽、CPU要求高

职责分离可以让我们根据不同节点的需求分配不同的硬件去部署。而且避免业务之间的互相干扰。

一个典型的es集群职责划分如图:

在这里插入图片描述

3.2.脑裂问题

但是采用分布式的主从架构的服务一般都会出现脑裂问题

脑裂是因为集群中的节点失联导致的。结点尚未宕机,但是失去通信(比如网络问题)

例如一个集群中,主节点与其它节点失联:

在这里插入图片描述

此时,node2和node3认为node1宕机,就会重新选主:

在这里插入图片描述

当node3当选后,集群继续对外提供服务,node2和node3自成集群,node1自成集群,两个集群数据不同步,出现数据差异,这个时候出现了俩个大脑

当网络恢复后,因为集群中有两个master节点,集群状态的不一致,出现脑裂的情况:

在这里插入图片描述

解决脑裂的方案是,要求选票超过 ( eligible节点数量 + 1 )/ 2 才能当选为主,因此eligible节点数量最好是奇数。对应配置项是discovery.zen.minimum_master_nodes,在es7.0以后,已经成为默认配置,因此一般不会发生脑裂问题

例如:3个节点形成的集群,选票必须超过 (3 + 1) / 2 ,也就是2票。node3得到node2和node3的选票,当选为主。node1只有自己1票,没有当选救失去主节点身份。集群中依然只有1个主节点,没有出现脑裂。

3.3.小结

master eligible节点的作用是什么?

  • 参与集群选主
  • 主节点可以管理集群状态、管理分片信息、处理创建和删除索引库的请求

data节点的作用是什么?

  • 数据的CRUD

coordinator节点的作用是什么?

  • 路由请求到其它节点

  • 合并查询到的结果,返回给用户

3.4.集群分布式存储

当新增文档时,应该保存到不同分片,保证数据均衡,那么coordinating node如何确定数据该存储到哪个分片呢?

3.4.1.分片存储测试

插入三条数据:
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

创建索引时候我没有没有添加索引mapping,也没有规定字段,在Elasticsearch中,如果你创建一个索引但没有显式定义映射(mapping)或字段(mapping),Elasticsearch会使用动态映射(dynamic mapping)来处理你插入的文档数据。动态映射允许Elasticsearch根据插入的文档数据自动推断字段的数据类型。
当你插入文档时,Elasticsearch会检查文档的字段,并根据字段值的类型自动创建相应的字段映射。例如,如果你插入一个包含字符串的字段,Elasticsearch会自动将其识别为文本字段,如果插入一个整数,它会将其识别为整数字段,以此类推。

测试可以看到,三条数据分别在不同分片,查询任意结点的数据

结果:

在这里插入图片描述

另一接待你查询
在这里插入图片描述

3.4.2.分片存储原理

elasticsearch会通过hash算法来计算文档应该存储到哪个分片:

在这里插入图片描述

说明:

  • )_routing默认是文档的id
  • ) 算法与分片数量有关,因此索引库一旦创建,分片数量不能修改!

新增文档的流程如下:

在这里插入图片描述

解读:

  • 1)新增一个id=1的文档
  • 2)对id做hash运算,假如得到的是2,则应该存储到shard-2
  • 3)shard-2的主分片在node3节点,将数据路由到node3
  • 4)保存文档
  • 5)同步给shard-2的副本replica-2,在node2节点
  • 6)返回结果给coordinating-node节点

3.4.3集群分布式查询

elasticsearch的查询分成两个阶段:

  • scatter phase:分散阶段,coordinating node会把请求分发到每一个分片(查询检索一般是根据text来查询,不知道具体数据id,所以会给每个结点发送查询)

所以之前查询任一结点,都会查询到全部数据,因为请求打到了所有数据

  • gather phase:聚集阶段,coordinating node汇总data node的搜索结果,并处理为最终结果集返回给用户

在这里插入图片描述

3.5.集群故障转移

集群的master节点会监控集群中的节点状态,如果发现有节点宕机,会立即将宕机节点的分片数据迁移到其它节点,确保数据安全,这个叫做故障转移。

1)例如一个集群结构如图:

在这里插入图片描述

现在,node1是主节点,其它两个节点是从节点。

2)突然,node1发生了故障:

在这里插入图片描述

宕机后的第一件事,需要重新选主,例如选中了node2:

在这里插入图片描述

node2成为主节点后,会检测集群监控状态,发现:shard-1、shard-0没有副本节点。因此需要将node1上的数据迁移到node2、node3:

在这里插入图片描述

所以故障转移主要是进行了俩布,

  1. 主结点宕机后选择新节点为主结点
  2. 新的主节点为了保障宕机结点所存储的数据安全,第一时间转移到其他安全结点

这是es集群的默认策略 这里进行演示即可

在这里插入图片描述
现在三个结点正常
在这里插入图片描述

关闭虚拟机的任一结点

等待一会后 集群自动迁移
在这里插入图片描述
当es01重新启动后 数据均衡又会把数据分给挂掉的结点
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/157974.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

17.(开发工具篇Gitlab)如何在Gitlab配置ssh key

前言: Git是分布式的代码管理工具,远程的代码管理是基于SSH的,所以要使用远程的Git则需要SSH的配置 一、git 配置 (1)打开 git 命令窗口 (2)配置用户名(填自己的姓名) git config --global user.name “chenbc” (3)配置用户邮箱(填自己的邮箱) git config …

【计算机网络】——前言计算机网络发展的历程概述

主页点击直达:个人主页 我的小仓库:代码仓库 C语言偷着笑:C语言专栏 数据结构挨打小记:初阶数据结构专栏 Linux被操作记:Linux专栏 LeetCode刷题掉发记:LeetCode刷题 算法:算法专栏 C头…

HTTP 响应头 X-Frame-Options

简介 X-Frame-Options HTTP 响应头用来给浏览器一个指示。该指示的作用为&#xff1a;是否允许页面在 <frame>, </iframe> 或者 <object> 中展现。 网站可以使用此功能&#xff0c;来确保自己网站的内容没有被嵌套到别人的网站中去&#xff0c;也从而避免了…

spring6-事务

文章目录 1、JdbcTemplate1.1、简介1.2、准备工作1.3、实现CURD①装配 JdbcTemplate②测试增删改功能③查询数据返回对象④查询数据返回list集合⑤查询返回单个的值 2、声明式事务概念2.1、事务基本概念①什么是事务②事务的特性 2.2、编程式事务2.3、声明式事务 3、基于注解的…

PostMan环境变量、全局变量、动态参数使用

一、环境准备 postmanmoco [{"description": "登录认证","request": {"uri": "/login","method": "post","forms": {"user": "admin","password": "a123…

pycharm远程调试运行程序出现No such file or directory:解决办法

太离谱了&#xff01;&#xff01;&#xff01;&#xff01; 首先还是配置这里 然后重点来了&#xff0c;root path这里填上代码文件夹路径 然后mapping这里就不要再加了&#xff01;&#xff01;&#xff01;因为这个会和上面的root path拼在一起&#xff01;&#xff01;&am…

基于nodejs+vue大学食堂订餐系统

模块包括主界面&#xff0c;首页、个人中心、管理员管理、用户管理、菜品管理、论坛管理、公告管理、基础数据管理、目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1nodejs简介 4 2.2 express框…

uniapp封装loading 的动画动态加载

实现效果 html代码 <view class"loadBox" v-if"loading"><img :src"logo" class"logo"> </view> css代码 .loadBox {width: 180rpx;min-height: 180rpx;border-radius: 50%;display: flex;align-items: center;j…

Java 解析 cURL(bash) 命令

解析 cURL&#xff08;bash&#xff09; 命令 1. 主要用于解析从浏览器复制来的 cURL(bash)2. 废话不多说&#xff0c;都在&#x1f37b;代码里了。参考资料 1. 主要用于解析从浏览器复制来的 cURL(bash) curl https://eva2.csdn.net/v3/06981375190026432f77c01bfca33e32/lts/…

【yolov5】改进系列——特征图可视化(V7.0 的一个小bug)

文章目录 前言一、特征图可视化1.1 V7.0的小bug 二、可视化指定层三、合并通道可视化总结 前言 对于特征图可视化感兴趣可以参考我的另一篇记录&#xff1a;六行代码实现&#xff1a;特征图提取与特征图可视化&#xff0c;可以实现分类网络的特征图可视化 最近忙论文&#xf…

Docker开启远程访问+idea配置docker+dockerfile发布java项目

一、docker开启远程访问 1.编辑docker服务文件 vim /usr/lib/systemd/system/docker.servicedocker.service原文件如下&#xff1a; [Unit] DescriptionDocker Application Container Engine Documentationhttps://docs.docker.com Afternetwork-online.target docker.socke…

natapp内网穿透-将本地运行的程序/服务器通过公网IP供其它人访问

文章目录 1.几个基本概念1.1 局域网1.2 内网1.3 内网穿透1.4 Natapp 2.搭建内网穿透环境3.本地服务测试 1.几个基本概念 1.1 局域网 LAN&#xff08;Local Area Network&#xff0c;局域网&#xff09;是一个可连接住宅&#xff0c;学校&#xff0c;实验室&#xff0c;大学校…

【需求侧响应】综合能源中多种需求响应——弹性电价、可平移及可削减研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

【数据结构】:栈的实现

1 栈 1.1栈的概念及结构 栈&#xff1a;一种特殊的线性表&#xff0c;其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶&#xff0c;另一端称为栈底。栈中的数据元素遵守后进先出LIFO&#xff08;Last In First Out&#xff09;的原则 压栈…

搭建一个Chatbot需要哪些条件呢?

在当今的数字世界中&#xff0c;Chatbot已经成为企业的重要工具。它们提供了一种方便高效的方式来与客户互动、提供支持和自动化任务。随着对即时通信和个性化体验的需求不断增加&#xff0c;Chatbot已成为一种有价值的解决方案。他们可以同时处理多个对话&#xff0c;确保快速…

07-网络篇-抓包分析TCP

为了抓包方便一些&#xff0c;我在ubuntu虚拟机运行服务端程序&#xff0c;而在windows运行客户端程序&#xff0c;关于客户端与服务端程序如下。 ##1.程序 客户端&#xff1a; vs_client.cpp #include "stdafx.h" #include <iostream> #include <winsock2…

洛谷【入门6】函数与结构体-P5735 【深基7.例1】距离函数

## 题目描述 给出平面坐标上不在一条直线上三个点坐标 (x1​,y1​),(x2​,y2​),(x3​,y3​)&#xff0c;坐标值是实数&#xff0c;且绝对值不超过 100.00&#xff0c;求围成的三角形周长。保留两位小数。 对于平面上的两个点 (x1​,y1​),(x2​,y2​)&#xff0c;则这两个点…

7 使用Docker容器管理的tomcat容器中的项目连接mysql数据库

1、查看容器的IP 1&#xff09;进入容器 docker exec -it mysql-test /bin/bash 2&#xff09;显示hosts文件内容 cat /etc/hosts 这里容器的ip为172.17.0.2 除了上面的方法外&#xff0c;也可以在容器外使用docker inspect查看容器的IP docker inspect mysql-test 以下为…

Kafka 开启SASL/SCRAM认证 及 ACL授权(三)验证

Kafka 开启SASL/SCRAM认证 及 ACL授权(三)验证。 官网地址:https://kafka.apache.org/ 本文说明如何做client验证ACL是否生效,我们之前开启了无acl信息不允许访问的配置。涉及的client有以下几个场景:shell脚本、python脚本、java应用、flink流。 kafka shell script验证…

UGUI交互组件ScrollView

一.ScrollView的结构 对象说明Scroll View挂有Scroll Rect组件的主体对象Viewport滚动显示区域&#xff0c;有Image和mask组件Content显示内容的父节点&#xff0c;只有个Rect Transform组件Scrollbar Horizontal水平滚动条Scrollbar Vertical垂直滚动条 二.Scroll Rect组件的属…