💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
📚2 运行结果
🎉3 参考文献
🌈4 Matlab代码及数据
💥1 概述
蚁狮算法(Ant Lion Optimizer, ALO)是一种基于自然界中蚁狮捕食行为的优化算法。它模拟了蚁狮在寻找食物时的行为,通过不断迭代来优化问题的解。蚁狮算法结合了蚁群算法和粒子群算法的特点,具有较好的全局搜索能力和收敛性能。
BP神经网络是一种常用的机器学习算法,用于解决回归和分类问题。它通过反向传播算法来训练网络权重,使得网络的输出与目标值之间的误差最小化。然而,BP神经网络容易陷入局部最优解,且训练速度较慢。
将蚁狮算法与BP神经网络相结合,可以充分利用蚁狮算法的全局搜索能力来优化BP神经网络的权重和阈值,提高网络的性能和收敛速度。
具体的ALO-BP预测方法如下:
1. 初始化蚁狮种群和BP神经网络的权重和阈值。
2. 根据蚁狮算法的搜索策略,更新蚁狮种群的位置和速度。
3. 根据蚁狮种群的位置,更新BP神经网络的权重和阈值。
4. 使用更新后的BP神经网络进行预测,并计算预测误差。
5. 根据预测误差,更新蚁狮种群的位置和速度。
6. 重复步骤3-5,直到达到停止迭代条件。
通过不断迭代优化BP神经网络的权重和阈值,ALO-BP预测方法可以提高预测的准确性和稳定性。同时,蚁狮算法的全局搜索能力可以帮助BP神经网络避免陷入局部最优解。因此,ALO-BP预测方法在回归预测问题中具有较好的性能。
📚2 运行结果
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]南敬昌,杜晶晶,高明明.基于蚁狮算法优化的BP-RBF功放行为模型研究[J].[2023-10-14].
[2]齐琦,陈芳芳,赵辉,等.基于优化BP神经网络光伏出力短期预测研究[J].计算机测量与控制, 2021, 029(004):70-75.DOI:10.16526/j.cnki.11-4762/tp.2021.04.014.
[3]颜高洋,丁贵立,许志浩,等.基于帝王蝶优化算法的BP神经网络能源预测模型研究[J].南昌工程学院学报, 2023.