想要精通算法和SQL的成长之路 - 滑动窗口和大小根堆

想要精通算法和SQL的成长之路 - 滑动窗口和大小根堆

  • 前言
  • 一. 大小根堆
  • 二. 数据流的中位数
    • 1.1 初始化
    • 1.2 插入操作
    • 1.3 完整代码
  • 三. 滑动窗口中位数
    • 3.1 在第一题的基础上改造
    • 3.2 栈的remove操作

前言

想要精通算法和SQL的成长之路 - 系列导航

一. 大小根堆

先来说下大小根堆是什么:
在这里插入图片描述

  • 大根堆:栈顶元素最大(上图左侧部分),栈底至栈顶元素值递增。
  • 小根堆:栈顶元素最小(上图右侧部分),栈底至栈顶元素值递减。

Java当中,可以用什么来表示大小根堆?

小根堆:

Queue<Integer> small = new PriorityQueue<>();
// 或者 x - y 是计算,在特殊情况下可能造成精度越界的情况
Queue<Integer> small = new PriorityQueue<>((x, y) -> x - y);
// 或者,Integer.compare 是纯比较,不会出现精度越界
Queue<Integer> small = new PriorityQueue<>((x, y) -> Integer.compare(x, y));
// 或者
Queue<Integer> small = new PriorityQueue<>(Integer::compare);

大根堆:

Queue<Integer> big = new PriorityQueue<>((x, y) -> y - x);

大小根堆的常规操作:

  • 获取栈顶元素:peek();
  • 栈顶元素移除:poll();

二. 数据流的中位数

原题链接
在这里插入图片描述
在这里插入图片描述

再说下我们的思路:

  1. 同时维护大小根堆,并且约定小根堆的元素个数总是 >= 大根堆元素个数(最多个数多一个)。
  2. 如果元素个数是奇数,那么中位数就是小根堆堆顶元素。
  3. 如果元素个数是偶数,那么中位数就是(大根堆堆顶 + 小根堆堆顶) / 2。

1.1 初始化

Queue<Integer> big, small;/*** big                      small* 最小值 ---> 大根堆顶 中位数 小根堆顶 ---> 最大值*/
public MedianFinder() {small = new PriorityQueue<>();// 小根堆,堆顶元素最小(存储比中位数大的部分)big = new PriorityQueue<>((x, y) -> y - x);// 大根堆,堆顶元素最大(存储比中位数小的部分)
}

1.2 插入操作

插入的时候,我们考虑到两种情况:

  • 如果大小根堆的元素个数相等,我们优先把新元素加入到小根堆。
  • 否则,将元素加入到大根堆。

但是,我们并不知道以下三者的关系:

  • 大根堆堆顶元素值。
  • 当前待加入元素值。
  • 小根堆堆顶元素值。

而我们需要去维护他们,一定满足:大根堆堆顶元素值 < 小根堆堆顶元素值。

咋办呢?以第一种情况为例,我们可以:

  • 先把元素加入到大根堆。那么经过排序后,大根堆的堆顶元素就是最大的那个(可能是当前元素,也可能不是)。此时大根堆Size > 小根堆Size
  • 把大根堆堆顶元素移除,加入到小根堆。小根堆经过排序后,这样就能保证大根堆堆顶元素值 < 小根堆堆顶元素值。

写成代码就是:

public void addNum(int num) {// 如果大小根堆 的 大小 一样,我们往小根堆放元素。让小根堆size >= 大根堆sizeif (big.size() == small.size()) {// 方式一定是先让放大根堆,再把大根堆的堆顶元素移除到小根堆big.add(num);small.add(big.poll());} else {small.add(num);big.add(small.poll());}
}

1.3 完整代码

那么查询函数就更简单了,结合上面的思路,我们得到完整代码如下:

public class MedianFinder {Queue<Integer> big, small;/*** big                      small* 最小值 ---> 大根堆顶 中位数 小根堆顶 ---> 最大值*/public MedianFinder() {small = new PriorityQueue<>();// 小根堆,堆顶元素最小(存储比中位数大的部分)big = new PriorityQueue<>((x, y) -> y - x);// 大根堆,堆顶元素最大(存储比中位数小的部分)}public void addNum(int num) {// 如果大小根堆 的 大小 一样,我们往小根堆放元素。让小根堆size >= 大根堆sizeif (big.size() == small.size()) {// 方式一定是先让放大根堆,再把大根堆的堆顶元素移除到小根堆big.add(num);small.add(big.poll());} else {small.add(num);big.add(small.poll());}}public double findMedian() {return small.size() == big.size() ? (small.peek() + big.peek()) / 2.0 : small.peek();}
}

三. 滑动窗口中位数

原题链接
在这里插入图片描述
思路如下:

  1. 我们先创建一个窗口,把前k个数字通过大小根堆的方式去维护(题目一的思路)。
  2. 后续每次滑动窗口的移动,都带来两个变数:一个旧元素会从窗口出移除(但是从大根堆移除还是小根堆移除?),一个新元素会加入到窗口中(加入到大根堆还是小根堆?)
  3. 由于第二步的变数,可能导致大小根堆的Size不均衡。我们的目的:让小根堆的Size >= 大根堆Size,最多多一个元素。
  4. 因此每次滑动窗口的移动,我们还需要维护大小根堆。

3.1 在第一题的基础上改造

首先考虑到精度的问题,我们的大小根堆不能在根据差值来比较了,而是:

right = new PriorityQueue<>((x, y) -> Integer.compare(x, y));// 小根堆,堆顶元素最小(存储比中位数大的部分)
left = new PriorityQueue<>((x, y) -> Integer.compare(y, x));// 大根堆,堆顶元素最大(存储比中位数小的部分)

其次,求中位数的时候,也需要大小根堆的堆顶元素,先除以2,再和相加:

if (left.size() == right.size()) {return (left.peek() / 2.0) + (right.peek() / 2.0);

最终代码如下:

public class Test480 {Queue<Integer> left, right;public double[] medianSlidingWindow(int[] nums, int k) {right = new PriorityQueue<>((x, y) -> Integer.compare(x, y));// 小根堆,堆顶元素最小(存储比中位数大的部分)left = new PriorityQueue<>((x, y) -> Integer.compare(y, x));// 大根堆,堆顶元素最大(存储比中位数小的部分)int len = nums.length;// 结果集double[] res = new double[len - k + 1];// 创建大小根堆for (int i = 0; i < k; i++) {right.add(nums[i]);}for (int i = 0; i < k / 2; i++) {left.add(right.poll());}// 初始化第一个中位数res[0] = findMedian();for (int i = k; i < len; i++) {// 滑动窗口长度固定,每次移动,都有一个元素要删除和一个元素要新加入int del = nums[i - k], add = nums[i];if (add >= right.peek()) {right.add(add);} else {left.add(add);}// 如果待删除元素在小根堆,在小根堆处删除,否则在大根堆中删除if (del >= right.peek()) {right.remove(del);} else {left.remove(del);}// 维护大小根堆的元素个数adjust();res[i - k + 1] = findMedian();}return res;}void adjust() {while (left.size() > right.size()) {right.add(left.poll());}while (right.size() - left.size() > 1) {left.add(right.poll());}}public double findMedian() {if (left.size() == right.size()) {return (left.peek() / 2.0) + (right.peek() / 2.0);} else {return right.peek() * 1.0;}}
}

这个写法其实是没问题的,但是在元素个数非常大的情况下,就容易超时:
在这里插入图片描述

3.2 栈的remove操作

问题处在优先队列的的一个元素remove操作:
在这里插入图片描述
它是先查找(复杂度O(N)),再进行删除(复杂度O(logN)),所以会超时。因此我们这里可以引入红黑树来进行替代。

有这么几个需要注意的地方:

  1. 我们用TreeSet存储元素的时候,不再是元素值,而是元素的下标。 因为题目中同一个窗口的元素可能重复。元素值相等的时候,根据下标大小来比较。
Comparator<Integer> comparator = (x, y) -> nums[x] != nums[y] ? Integer.compare(nums[x], nums[y]) : x - y;
right = new TreeSet<>(comparator);// 小根堆,堆顶元素最小(存储比中位数大的部分)
left = new TreeSet<>(comparator.reversed());// 大根堆,堆顶元素最大(存储比中位数小的部分)
  1. 滑动窗口移动的时候。需要删除对应的元素下标 ,由于存在重复值,我们需要大小根堆都把这个下标给剔除。
  2. peek函数替代为first函数。poll函数替代为pollFirst函数。

完整代码如下:

public class Test480 {TreeSet<Integer> left, right;int[] nums;public double[] medianSlidingWindow(int[] nums, int k) {this.nums = nums;Comparator<Integer> comparator = (x, y) -> nums[x] != nums[y] ? Integer.compare(nums[x], nums[y]) : x - y;right = new TreeSet<>(comparator);// 小根堆,堆顶元素最小(存储比中位数大的部分)left = new TreeSet<>(comparator.reversed());// 大根堆,堆顶元素最大(存储比中位数小的部分)int len = nums.length;// 结果集double[] res = new double[len - k + 1];// 创建大小根堆for (int i = 0; i < k; i++) {addToWindow(i);}res[0] = findMedian();for (int i = k; i < len; i++) {// 滑动窗口长度固定,每次移动,都有一个元素要删除和一个元素要新加入left.remove(i - k);right.remove(i - k);addToWindow(i);res[i - k + 1] = findMedian();}return res;}void addToWindow(int index) {// 我们总是把新元素先统一加入到大根堆。right.add(index);left.add(right.pollFirst());// 然后再维护大小while (left.size() > right.size()) {right.add(left.pollFirst());}}public double findMedian() {if (left.size() == right.size()) {return (nums[left.first()] / 2.0) + (nums[right.first()] / 2.0);} else {return nums[right.first()] * 1.0;}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/159643.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

NPM 常用命令(十二)

目录 1、npm unpublish 1.1 使用语法 1.2 描述 2、npm unstar 2.1 使用语法 3、npm update 3.1 使用语法 3.2 描述 3.3 示例 插入符号依赖 波浪号依赖 低于 1.0.0 的插入符号依赖 子依赖 更新全局安装的包 4、npm version 4.1 使用语法 5、npm view 5.1 使用语…

LLMs的终局是通用人工智能AGI总结 生成式AI和大语言模型 Generative AI LLMs

终于学完了 生成式AI和大语言模型 Generative AI & LLMs. LLMs 解决了如下问题&#xff1a; 对NLP的不能够理解长句子&#xff0c;解决方案 自注意力机制Transformers architecture Attention is all you need大模型算力不够&#xff0c;解决方案 LLMs 缩放法则和计算最…

电商爬虫API快速入门指南

​电子商务爬虫API​是一个公共数据爬虫API&#xff0c;旨在通过大多数电子商务网站收集大量实时本地化数据并搜索信息。这个数据收集工具作为一个值得信赖的解决方案&#xff0c;实现通过最复杂的电子商务网站收集公共信息。电子商务爬虫API适用于商业用例&#xff0c;诸如价格…

数据结构 - 2(顺序表10000字详解)

一&#xff1a;List 1.1 什么是List 在集合框架中&#xff0c;List是一个接口&#xff0c;继承自Collection。 Collection也是一个接口&#xff0c;该接口中规范了后序容器中常用的一些方法&#xff0c;具体如下所示&#xff1a; Iterable也是一个接口&#xff0c;Iterabl…

加入鲲鹏HPC训练营,一起引领高性能计算新潮流

随着科学技术的迅猛发展&#xff0c;高性能计算&#xff08;HPC&#xff09;已经成为各行各业的核心竞争力之一。在这个数字化时代&#xff0c;高性能计算对于解决大数据分析、人工智能、模拟计算等领域的复杂问题至关重要。 所谓HPC&#xff0c;就是一个计算机集群系统&#x…

安全典型配置(三)使用ACL禁止特定用户上网案例

【微|信|公|众|号&#xff1a;厦门微思网络】 安全典型配置&#xff08;一&#xff09;使用ACL限制FTP访问权限案例_厦门微思网络的博客-CSDN博客本例中配置的本地用户登录密码方式为irreversible-cipher&#xff0c;表示对用户密码采用不可逆算法进行加密&#xff0c;非法用…

android studio检测不到真机

我的情况是&#xff1a; 以前能检测到&#xff0c;有一天我使用无线调试&#xff0c;发现调试有问题&#xff0c;想改为USB调试&#xff0c;但是半天没反应&#xff0c;我就点了手机上的撤销USB调试授权&#xff0c;然后就G了。 解决办法&#xff1a; 我这个情况比较简单&…

女性用品经营商城小程序的作用是什么

女性悦己消费增强&#xff0c;围绕女性产生的商品&#xff0c;品牌多且样式足&#xff0c;消费者可以随时购买到&#xff0c;但随着线上互联网深入人们生活&#xff0c;电商近些年发展迅速&#xff0c;传统女性用品线下经销商或品牌在实际经营中面临着痛点。 线上卖货是各商家…

【C++】:string用法详解

朋友们、伙计们&#xff0c;我们又见面了&#xff0c;本期来给大家解读一下有关Linux的基础知识点&#xff0c;如果看完之后对你有一定的启发&#xff0c;那么请留下你的三连&#xff0c;祝大家心想事成&#xff01; C 语 言 专 栏&#xff1a;C语言&#xff1a;从入门到精通 数…

TCP/IP(十)TCP的连接管理(七)CLOSE_WAIT和TCP保活机制

一 CLOSE_WAIT探究 CLOSE_WAIT 状态出现在被动关闭方,当收到对端FIN以后回复ACK,但是自身没有发送FIN包之前 ① 服务器出现大量 CLOSE_WAIT 状态的原因有哪些? 1、通常来讲,CLOSE_WAIT状态的持续时间应该很短,正如SYN_RCVD状态2、但是在一些特殊情况下,就会出现大量连接长…

word误删除的文件怎么恢复?恢复办法分享

在日常工作和学习中&#xff0c;我们常常会使用到Word来撰写文章、毕业论文、方案等。然而&#xff0c;我们可能会遇到Word误删文件的情况&#xff0c;令我们陷入恐慌&#xff0c;特别是这个文件很重要时。幸运的是&#xff0c;有办法找回。下面一起来看下word误删除的文件怎么…

CEC2013(MATLAB):猎豹优化算法(The Cheetah Optimizer,CO)求解CEC2013

一、猎豹优化算法CO 猎豹优化算法&#xff08;The Cheetah Optimizer&#xff0c;CO&#xff09;由MohammadAminAkbari等人于2022年提出&#xff0c;该算法性能高效&#xff0c;思路新颖。 参考文献&#xff1a; Akbari, M.A., Zare, M., Azizipanah-abarghooee, R. et al. Th…

spring boot自定义配置时在yml文件输入有提示

自定义一个配置类&#xff0c;然后在yml文件具体配置值时&#xff0c;一般不会有提示&#xff0c;这个解决这个问题 依赖 <!--自定义配置类&#xff0c;在yml文件写的时候会有提示--><dependency><groupId>org.springframework.boot</groupId><arti…

【git篇】git的使用

文章目录 1. Git介绍与安装1. Git简介2. 下载安装程序3. 设置用户名和邮箱 2. Git的基本使用1. 创建版本库2. 文件管理1. 提交文件2. 查看状态3. 查看提交日志4. 版本回退 3. 原理解析1. Git区的划分2. 撤销修改3. 删除文件 4. 分支管理1. 基本原理2. 创建分支3. 合并分支4. 删…

网页游戏的开发框架

网页游戏开发通常使用不同的开发框架和技术栈&#xff0c;以创建各种类型的游戏&#xff0c;从简单的HTML5游戏到复杂的多人在线游戏&#xff08;MMO&#xff09;等。以下是一些常见的网页游戏开发框架和它们的特点&#xff0c;希望对大家有所帮助。北京木奇移动技术有限公司&a…

Android Studio SDK manager加载packages不全

打开Android Studio里的SDK manager&#xff0c;发现除了已安装的&#xff0c;其他的都不显示。 解决方法&#xff1a; 设置代理&#xff1a; 方便复制> http://mirrors.neusoft.edu.cn/ 重启Android Studio

[Spring] SpringMVC 简介(三)

目录 九、SpringMVC 中的 AJAX 请求 1、简单示例 2、RequestBody&#xff08;重点关注“赋值形式”&#xff09; 3、ResponseBody&#xff08;经常用&#xff09; 4、为什么不用手动接收 JSON 字符串、转换 JSON 字符串 5、RestController 十、文件上传与下载 1、Respo…

C/C++陷阱——临时变量的产生和特性

C/C陷阱——临时变量的产生和特性 在学习C常引用时&#xff0c;有这样一段代码引起了我的注意&#xff1a; int a 1; double& b a;当我编译这段代码时&#xff0c;竟然报错了&#xff1a; 按理来说&#xff0c;初始化引用时不能涉及权限的放大&#xff08;如用const in…

Kafka生产者使用案例

本文代码链接&#xff1a;https://download.csdn.net/download/shangjg03/88422633 1.生产者发送消息的过程 首先介绍一下 Kafka 生产者发送消息的过程&#xff1a; 1)Kafka 会将发送消息包装为 ProducerRecord 对象&#xff0c; ProducerRecord 对象包含了目标主题和要发送的…

如何正确维护实验室超声波清洗器?

实验室一直被视为一个严谨而严肃的场所&#xff0c;实验应遵循一定的步骤&#xff0c;使用的设备也经历了详细的选择&#xff0c;如实验室超声波清洗机&#xff0c;其特点远强于一般类型的清洗机。专门负责采购的实验室人员一般对优质服务的实验室超声波清洗机印象深刻&#xf…