让ChatGPT等模型学会自主思考!开创性技术“自主认知”框架

ChatGPT、百度文心一言、Bard等大语言模型展现出了超强的创造能力,加速了生成式AI的应用进程。但AI模型只能基于训练数据执行各种任务,无法像人类一样利用生活知识、过往经验用于复杂的推理和决策。

例如,在玩游戏时,人类可以利用各种线索、常识、经验以及对游戏规则的理解做出最佳决策。而AI只能通过大量训练学习游戏的模式,不具备人性化理解功能。一旦游戏规则或环境发生变化,AI就很难做出正确的选择。

为了解决这些难题,克莱姆森大学AI实验室提出了自主认知技术框(Autonomous Cognitive Entity,简称“ACE”)。通过道德、全局战略、代理模型、执行、认知控制和任务执行6大分层设计,使AI模型可以实现“自主决策”和道德推理的认知架构。

长期以来,让AI模型具备“常识推理”的能力一直是科研界的重中之重。而ACE框架被视为解决这个难题的创新性突破研究。

其实ACE概念与前不久中国科学院自动化研究所和耶鲁大学提出的“思维传播”技术框架类似,都是让大模型学会利用过往经验增强复杂推理能力来处理全新的问题,只不过推理分层更加具体化,并加入了道德规范的限制保证输出内容的安全性。

论文地址:https://arxiv.org/abs/2310.06775
在这里插入图片描述

ACE技术框架得到了业界众多技术大牛的认可。斯坦福大学计算机科学系教授John Etchemendy表示,ACE框架标志着人工智能研究的新范式,其分层抽象和信息反馈的设计对实现人工常识推理大有帮助。

麻省理工AI实验室主任Daniela Rus认为,ACE框架构建了一个集成伦理、认知和计算原理的完整结构,为人工常识推理提供了新的研究方向。

ACE框架的总目标是实现一种既高能又伦理的人工智能系统。其核心创新在于融合了顶层的抽象伦理推理与底层的具体任务实现,构建一个闭环完整的认知体系。

ACE主要由道德、全局战略、代理模型、执行、认知控制和任务执行6大层组成,每一层集中处理不同的功能,高层处理抽象推理,低层负责具体任务执行。

在这里插入图片描述

道德层

最高的道德层确定了整个系统的方向和原则, 其功能是定义一个自治代理的核心价值观和伦理原则,包含3部分。

(1)基本伦理准则:这是直观的道德准则,为系统提供基本遵循。

(2)次要原则:诸如人权义务等提供具体指导。

(3)使命宣言:定义代理的核心目标和意图。

全局战略层

在接收到来自道德层的抽象使命后,全局战略层会结合具体情境,制定实现这些使命的长期计划,包含2部分。

(1)情境融合:吸收环境信息,理解代理面临的具体情境。

(2)战略文件:产出指导性文件,为下层提供行动指南。

在这里插入图片描述

代理模型层

致力于理解一个代理在给定环境下的能力参数、系统结构、限制条件等,构建一个“自我模型”为决策提供依据,包含4部分。

(1)运行参数:通过监测获得的遥测数据。

(2)配置信息:软硬件架构、版本等。

(3)能力范围:可以完成和不能完成的事项。

(4)局限性:只能在特定条件下工作的约束。

执行功能层

执行功能层扮演“项目经理”的角色,将来自高层的战略使命转化为明确的计划路线图。路线图提供所有具体的执行步骤,同时考虑资源分配和风险管理,使战略落地,包含4部分。

(1)定义任务步骤:将战略任务分解为细粒度操作。

(2)设置检查点:定义重要的中间结果以验收进展。

(3)分配资源:优化资源使用以保证计划顺利执行。

(4)评估风险:预测可能的问题并提前规划应对措施。

在这里插入图片描述

认知控制层

认知控制层扮演“任务管理”的角色,会根据当前环境和反馈动态选择和调度合适的任务,包含4部分。
在这里插入图片描述

(1)任务选择:根据优先级、环境等选择下一个任务。

(2)任务切换:在任务间流畅切换以优化订单。

(3)挫折感知:如果任务重复失败会产生主动变更。

(4)内部调节:思考不同选择的利弊。

任务执行层

最后的任务执行层直接与环境交互,执行由认知控制层下达的特定任务。根据任务类型,可以调用API接口、控制机械装置、进行对话等,包含3部分。

(1)数字通信:使用编程语言和接口调用实现数字任务

(2)物理协同:控制机器人和传感器完成物理任务

(3)结果监测:比较结果与预期,发送成功或失败反馈

这种分工明确的多层设计有诸多好处:第一,不同层级可以同时并行工作,提升了效率;第二,分层的封装和信息隐藏增强了系统的安全性和可解释性;

第三,分层使系统可以模块化迭代升级,而不需要全重构;第四,高层可以监控低层的运行, 当Einmal出现偏差可以进行修正,保证系统的可控性。

在这里插入图片描述

此外,ACE框架的另一个创新在于巧妙利用了当前热门的大语言模型,例如,ChatGPT、Bard等。

这些模型通过学习海量文本数据,已经展现了接近人类的语言理解和语言生成能力。ACE框架将语言层面融入每个层级,使语言模型不再单独运行,而是成为支撑整个认知架构的关键组件。

从道德层到任务层,语言模型帮助理解抽象概念,进行策略推理,建立自我模型,甚至最终控制机器人执任务的方式都是语言化的。

这种融合为语言模型提供了明确的上下文和指导,让其生成的输出更加准确,避免了“自说自话”的问题。

这也表明,大语言模型也可以在系统级扮演重要角色,而不仅仅是完成单个语言任务。ACE框架展示了如何更好地利用大语言模型的潜力,将其打造为推动认知发展的核心引擎,为人工常识推理提供动力。

本文素材来源克莱姆森大学论文,如有侵权请联系删除

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/159663.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

01Maven的工作机制: Maven作为依赖管理工具以及Maven作为构建管理工具

Maven的特点及其应用 Maven是Apache软件基金会组织维护的一款专门为Java项目提供构建和依赖管理支持的工具 Maven作为依赖管理工具 管理jar包的规模: 随着我们使用的框架数量越来越多以及框架的封装程度也越来越高,项目中使用的jar包也就越来越多 Maven工程中依…

Qt QMovie和QLabel配合播放GIF表情包

文章目录 效果演示main函数创建MoviePlayer对象头文件movieplayer.h源文件movieplayer.cpp代码解释在Qt框架中,QMovie是用于处理动画和视频的类。所有源码已在本篇文章公布。 效果演示 main函数创建MoviePlayer对象 #include <QApplication>#include "movie

至强服务器BIOS/UEFI驱动开发笔记

至强服务器BIOS/UEFI驱动开发笔记 驱动开发基础Hello UEFI Driver 项目选择项目位置初始化驱动代码文件结构驱动程序入口和基本功能导入AMI工程AMI平台Hello UEFI Driver 编译问题测试结果打印设备列表继续开发`HelloWorldSupported`函数依赖配置使用脚本编译编译测试此DXE驱动…

RCNN系列网络的理解

R-CNN 作者 &#xff1a; Ross Girshick FAST R-CNN 作者 &#xff1a; Ross Girshick FASTER R-CNN 作者 &#xff1a; Jian Sun MASK R-CNN 作者 &#xff1a;kaiming he 一…

kong 和konga网关部署及使用

Kong是一款基于OpenResty&#xff08;Nginx Lua模块&#xff09;编写的高可用、易扩展的&#xff0c;由Mashape公司开源的API Gateway项目。Kong是基于NGINX和Apache Cassandra或PostgreSQL构建的&#xff0c;能提供易于使用的RESTful API来操作和配置API管理系统&#xff0c;…

使用XLua在Unity中获取lua全局变量和函数

1、Lua脚本 入口脚本 print("OK") --也会执行重定向 require("Test") 测试脚本 print("TestScript") testNum 1 testBool true testFloat 1.2 testStr "123"function testFun()print("无参无返回") endfunction te…

Android Framework通信:Handler

文章目录 前言一、Handler源码分析1、创建Handler2、发送消息3、取消息4、消息处理5、线程切换的方法&#xff08;Handler异步消息处理机制流程&#xff09;handler.sendMessage()handler.post()View.post()Activity中的runOnUiThread() 二、Handler高频面试题1、为什么要有Han…

React TreeSelect设置默认展开项的方法

需要实现TreeSelect组件的onTreeExpand、treeExpandedKeys方法。 代码样例如下&#xff1a; 1.TreeSelect标签部分 render() {const {codeselect} this.props;const {treeExpandedKeys} this.state ................<TreeSelectshowSearch{false}dropdownStyle{{ maxHei…

Java架构师缓存架构设计解决方案

目录 1 缓存常见的三大问题1.1 缓存雪崩1.2 缓存穿透1.3 缓存击穿2 缓存key的生成策略3 热点数据集中失效的问题4 如何提高缓存的命中率5 缓存和数据库双写不一致的问题6 如何对缓存数据进行分片想学习架构师构建流程请跳转:Java架构师系统架构设计 1 缓存常见的三大问题 缓…

分布式事务协调中间件---seata快速入门

分布式事务 Seata&#xff0c;之前叫做Fescar&#xff0c;是一个开源的分布式事务解决方案&#xff0c;它主要致力于提供高效和简单的分布式事务服务。Seata主要用于解决微服务架构下的数据一致性问题。 Seata 的基本原理是基于两阶段提交 (2PC) 以及三阶段提交 (3PC)&#xff…

私域社群团购直播活动报名小程序开发

新零售SaaS系统&#xff0c;一款超级好用的私域社交团购小程序。支持团购、直播&#xff0c;有统计、收款、发货等功能。直播配合开团转化率更高&#xff0c;一款真正的私域卖货神器。 社交化电商用户踊跃参与&#xff1a;在卖货的同时&#xff0c;体现众多消费者的参与动态更…

C语言---预处理详解

1.预定义符号 在C语言中有一些内置的预定义符号 __FILE__ __LINE__ __DATE__ __TIME__ __STDC__//进行编译的源文件 //文件当前的行号 //文件被编译的日期 //文件被编译的时间 //如果编译器遵循ANSI C&#xff0c;其值为1&#xff0c;否则未定义 编译器在__STDC__报错,说明,v…

回归预测 | MATLAB实现CNN-LSSVM基于卷积神经网络-最小二乘支持向量机的数据回归预测(多指标,多图)

回归预测 | MATLAB实现CNN-LSSVM基于卷积神经网络-最小二乘支持向量机的数据回归预测&#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现CNN-LSSVM基于卷积神经网络-最小二乘支持向量机的数据回归预测&#xff08;多指标&#xff0c;多图&#xff09;…

小程序框架语法详解以及页面生命周期的代码预演

目录 一、框架简介 二、视图层 2.1 简介 2.2 WXML语法演示 2.2.1 数据绑定 2.2.2 列表渲染 2.2.3 条件渲染 2.2.4 模板 2.3 事件系统 2.4 页面一级菜单展示及切换 2.5 a页面跳b页面界面内部按钮演示 2.6 a页面跳c页面&#xff08;不在一级菜单内的页面&#xff09;…

Webpack和JShaman相比有什么不同?

Webpack和JShaman相比有什么不同&#xff1f; Webpack的功能是打包&#xff0c;可以将多个JS文件打包成一个JS文件。 JShaman专门用于对JS代码混淆加密&#xff0c;目的是让JavaScript代码变的不可读、混淆功能逻辑、加密代码中的隐秘数据或字符&#xff0c;是用于代码保护的…

想要精通算法和SQL的成长之路 - 滑动窗口和大小根堆

想要精通算法和SQL的成长之路 - 滑动窗口和大小根堆 前言一. 大小根堆二. 数据流的中位数1.1 初始化1.2 插入操作1.3 完整代码 三. 滑动窗口中位数3.1 在第一题的基础上改造3.2 栈的remove操作 前言 想要精通算法和SQL的成长之路 - 系列导航 一. 大小根堆 先来说下大小根堆是什…

NPM 常用命令(十二)

目录 1、npm unpublish 1.1 使用语法 1.2 描述 2、npm unstar 2.1 使用语法 3、npm update 3.1 使用语法 3.2 描述 3.3 示例 插入符号依赖 波浪号依赖 低于 1.0.0 的插入符号依赖 子依赖 更新全局安装的包 4、npm version 4.1 使用语法 5、npm view 5.1 使用语…

LLMs的终局是通用人工智能AGI总结 生成式AI和大语言模型 Generative AI LLMs

终于学完了 生成式AI和大语言模型 Generative AI & LLMs. LLMs 解决了如下问题&#xff1a; 对NLP的不能够理解长句子&#xff0c;解决方案 自注意力机制Transformers architecture Attention is all you need大模型算力不够&#xff0c;解决方案 LLMs 缩放法则和计算最…

电商爬虫API快速入门指南

​电子商务爬虫API​是一个公共数据爬虫API&#xff0c;旨在通过大多数电子商务网站收集大量实时本地化数据并搜索信息。这个数据收集工具作为一个值得信赖的解决方案&#xff0c;实现通过最复杂的电子商务网站收集公共信息。电子商务爬虫API适用于商业用例&#xff0c;诸如价格…

数据结构 - 2(顺序表10000字详解)

一&#xff1a;List 1.1 什么是List 在集合框架中&#xff0c;List是一个接口&#xff0c;继承自Collection。 Collection也是一个接口&#xff0c;该接口中规范了后序容器中常用的一些方法&#xff0c;具体如下所示&#xff1a; Iterable也是一个接口&#xff0c;Iterabl…