概述
K8S 是什么?
K8S 的全称为 Kubernetes (K12345678S),PS:“嘛,写全称也太累了吧,写”。不如整个缩
由来:
K8S由coogle的Borg系统(博格系统,google内部使用的大规模容器编排工具)作为原型,后经GO语言延用Borg的思路重写并指献给CNCE基全会开源。
K8S由google的Borg系统(博格系统,google内部使用的大规模容器编排工具)作为原型,
后经GO语言延用Borg的思路重写并捐献给CNCF基金会开源。
云原生基金会(CNCF)于2015年12月成立,隶属于Linux基金会。
CNCF孵化的第一个项目就是Kubernetes,随着容器的广泛使用,
Kubernetes已经成为容器编排工具的事实标准。
含义:
词根源于希腊语的 舵手、飞行员
官网:
https://kubernetes.iohttps://kubernetes.io
GitHub:
https://github.com/kubernetes /kubernetes
版本升级时,不能跨越版本升级,不然会导致系统崩溃
作用:
用于自动部署、扩展和管理“容器化 (containerized) 应用程序”的开源系统。
可以理解成 K8S 是负责自动化运维管理多个容器化程序(比如 Docker)的集群,是一个生态极其丰富的容器编排框架工具。
为什么要用K8 ?
试想下传统的后端部署办法:把程序包(包括可执行二进制文件、配置文件等)放到服务器上,接着运行启动脚本把程序跑起来,同时启动守护脚本定期检查程序运行状态、必要的话重新拉起程序。
设想一下,如果服务的请求量上来,已部署的服务响应不过来怎么办?传统的做法往往是,如果请求量、内存、CPU超过闽值做了告警,运维人员马上再加几台服务器,部署好服务之后,接入负载均衡来分担已有服务的压力。
这样问题就出现了:从监控告警到部署服务,中间需要人力介入! 那么,有没有办法自动完成服务的部署、更新、卸载和扩容、缩容呢?而这就是 K8S 要做的事情: 自动化运维管理容器化 (Docker) 程序。
K8S 的目标是让部要容器化应用简单高效。
K8S 解决了裸跑Docker 的若干痛点:
- 单机使用,无法有效集群
- 随着突器数量的上升,管理成本禁升
- 没有有效的容灾、自愈机制
- 没有预设编排模板,无法实现快速、大规模容器调度
- 没有统一的配置管理中心工具
- 没有容器生命周期的管理工具
- 没有图形化运维管理工具
K8S是Google开源的容器集群管理系统,在Docker等容器技术的基础上,为容器化的应用提供部署运行、资源调度、服务发现和动态伸缩等系列完整功能,提高了大规模容器集群管理的便捷性。其主要功能如下
- 使用 Docker 等容器技术对应用程序包装(package) 、实例化 (instantiate) 、运行 (run)。
- 以集群的方式运行、管理跨机器的容器。
- 解决 Docker 跨机器容器之间的通讯问题。
- K8s 的自我修复机制使得容器集群总是运行在用户期望的状态。
K8S 的特性:***
1、弹性伸缩
使用命令、UI或者基于CPO使用情况自动快速扩容和缩容应用程序实例,保证应用业务高峰并发时的高可用性:业务低峰时回收资源,以最小成本运行服务。
2、自我修复
在节点故障时重新启动失败的容器,替换和重新部署,保证预期的副本数量:杀死健康检查失败的容器,并且在未准备好之前不会处理客户端请求,确保线上服务不中断。
3、服务发现和负载均衡
K8S为多个容器提供一个统一访问入口(内部P地址和一个DNS名称),并且负载均衡关联的所有容器,使得用户无需考虑容器IP问题。
4、自动发布(默认滚动发布模式) 和可滚
K8S采用滚动更新策略更新应用,
一次更新一个或者部分Pod,而不是同时删除所有Pod,如果更新过程中出现问题,将回滚更改,确保升级,不影响业务。
5、集中化配置管理和密钥管理
管理机密数据和应用程序配置,而不需要把敏感数据暴露在镜像里,提高敏感数据安全性。并可以将一些常用的配置存储在K8S中,方便应用程序使用。
6、存储编排,支持外挂存储并对外挂存储资源进行编排
桂载外部存储系统,无论是来自本地存储,公有云 (如AMS),还是网络存情 (如NES、GLusterfs、Ceph)都作为集群资源的一部分使用.极大提高存储使用灵活性。
7、任务批处理运行
提供一次性任务,定时任务;满足批量数据处理和分析的场景
Kubernetes 集群架构与组件 *****
K8S 是属于主从设备模型(Master-Slave 架构),即有 Master 节点负责集群的调度、管理和运维,Slave 节点是集群中的运算工作负载节点。
在 K8S 中,主节点一般被称为 Master 节点,而从节点则被称为 Worker Node 节点,每个 Node 都会被 Master 分配一些工作负载。
Master 组件可以在群集中的任何计算机上运行,但建议 Master 节点占据一个独立的服务器。因为 Master 是整个集群的大脑,如果 Master 所在节点宕机或不可用,那么所有的控制命令都将失效。除了 Master,在 K8S 集群中的其他机器被称为 Worker Node 节点,当某个 Node 宕机时,其上的工作负载会被 Master 自动转移到其他节点上去。
核心组件
核心组件-Master 组件
Kube-apiserver
用于暴露 Kubernetes API,任何资源请求或调用操作都是通过 kube-apiserver 提供的接口进行。以 HTTP Restful API 提供接口服务,所有对象资源的增删改查和监听操作都交给 API Server 处理后再提交给 Etcd 存储
可以理解成 API Server 是 K8S 的请求入口服务。API Server 负责接收 K8S 所有请求(来自 UI 界面或者 CLI 命令行工具), 然后根据用户的具体请求,去通知其他组件干活。可以说 API Server 是 K8S 集群架构的大脑
Kube-controller-manager
运行管理控制器,是 K8S 集群中处理常规任务的后台线程,是 K8S 集群里所有资源对象的自动化控制中心。
在 K8S 集群中,一个资源对应一个控制器,而 Controller manager 就是负责管理这些控制器的。
由一系列控制器组成,通过 API Server 监控整个集群的状态,并确保集群处于预期的工作状态,比如当某个 Node 意外宕机时,Controller Manager 会及时发现并执行自动化修复流程,确保集群始终处于预期的工作状态。
这些控制器主要包括:
•Node Controller(节点控制器):
负责在节点出现故障时发现和响应。
•Replication Controller(副本控制器):
负责保证集群中一个 RC(资源对象 Replication Controller)所关联的 Pod 副本数始终保持预设值。
可以理解成确保集群中有且仅有 N 个 Pod 实例,N 是 RC 中定义的 Pod 副本数量。
•Endpoints Controller(端点控制器):
填充端点对象(即连接 Services 和 Pods),负责监听 Service 和对应的 Pod 副本的变化。
可以理解端点是一个服务暴露出来的访问点,如果需要访问一个服务,则必须知道它的 endpoint。
•Service Account & Token Controllers(服务帐户和令牌控制器):
为新的命名空间创建默认帐户和 API 访问令牌。
•ResourceQuota Controller(资源配额控制器):
确保指定的资源对象在任何时候都不会超量占用系统物理资源。
•Namespace Controller(命名空间控制器):
管理 namespace 的生命周期。
•Service Controller(服务控制器):
属于 K8S 集群与外部的云平台之间的一个接口控制器。
Kube-scheduler (一共62种算法)
是负责资源调度的进程,根据调度算法为新创建的 Pod 选择一个合适的 Node 节点。
可以理解成 K8S 所有 Node 节点的调度器。当用户要部署服务时,Scheduler 会根据调度算法选择最合适的 Node 节点来部署 Pod:
- 预选策略(predicate)
- 预选策略(predicate)
API Server 接收到请求创建一批 Pod ,API Server 会让 Controller-manager 按照所预设的模板去创建 Pod,Controller-manager 会通过 API Server 去找 Scheduler 为新创建的 Pod 选择最适合的 Node 节点。比如运行这个 Pod 需要 2C4G 的资源,Scheduler 会通过预选策略过滤掉不满足策略的 Node 节点。Node 节点中还剩多少资源是通过汇报给 API Server 存储在 etcd 里,API Server 会调用一个方法找到 etcd 里所有 Node 节点的剩余资源,再对比 Pod 所需要的资源,如果某个 Node 节点的资源不足或者不满足 预选策略的条件则无法通过预选。预选阶段筛选出的节点,在优选阶段会根据优选策略为通过预选的 Node 节点进行打分排名, 选择得分最高的 Node。例如,资源越富裕、负载越小的 Node 可能具有越高的排名。
配置存储中心
etcd
K8S 的存储服务。etcd 是分布式键值存储系统,存储了 K8S 的关键配置和用户配置,K8S 中仅 API Server 才具备读写权限,其他组件必须通过 API Server 的接口才能读写数据。
Node 组件
Kubelet
Node 节点的监视器,以及与 Master 节点的通讯器。Kubelet 是 Master 节点安插在 Node 节点上的“眼线”,它会定时向 API Server 汇报自己 Node 节点上运行的服务的状态,并接受来自 Master 节点的指示采取调整措施。
从 Master 节点获取自己节点上 Pod 的期望状态(比如运行什么容器、运行的副本数量、网络或者存储如何配置等), 直接跟容器引擎交互实现容器的生命周期管理,如果自己节点上 Pod 的状态与期望状态不一致,则调用对应的容器平台接口(即 docker 的接口)达到这个状态。
管理镜像和容器的清理工作,保证节点上镜像不会占满磁盘空间,退出的容器不会占用太多资源。
总结:
在 Kubernetes 集群中,在每个 Node(又称 Worker Node)上都会启动一个 kubelet 服务进程。该进程用于处理 Master 下发到本节点的任务,管理 Pod 及 Pod 中的容器。每个 kubelet 进程都会在 API Server 上注册节点自身的信息,定期向 Master 汇报节点资源的使用情况,并通过 cAdvisor 监控容器和节点资源。
Kube-Proxy
在每个 Node 节点上实现 Pod 网络代理,是 Kubernetes Service 资源的载体,负责维护网络规则和四层负载均衡工作。 负责写入规则至iptables、ipvs实现服务映射访问的。
Kube-Proxy 本身不是直接给 Pod 提供网络,Pod 的网络是由 Kubelet 提供的,Kube-Proxy 实际上维护的是虚拟的 Pod 集群网络。
Kube-apiserver 通过监控 Kube-Proxy 进行对 Kubernetes Service 的更新和端点的维护。
在 K8S 集群中微服务的负载均衡是由 Kube-proxy 实现的。Kube-proxy 是 K8S 集群内部的负载均衡器。它是一个分布式代理服务器,在 K8S 的每个节点上都会运行一个 Kube-proxy 组件。
三种模式 网络模型
1、node ip
2、pod ip
3、cluster ip
docker 或 rocket
容器引擎,运行容器,负责本机的容器创建和管理工作。
Kubernetes 核心概念
Kubernetes 包含多种类型的资源对象:Pod、Label、Service、Replication Controller 等。
所有的资源对象都可以通过 Kubernetes 提供的 kubectl 工具进行增、删、改、查等操作,并将其保存在 etcd 中持久化存储。
Kubernets其实是一个高度自动化的资源控制系统,通过跟踪对比etcd存储里保存的资源期望状态与当前环境中的实际资源状态的差异,来实现自动控制和自动纠错等高级功能。
Pod
Pod是 Kubernetes 创建或部署的最小/最简单的基本单位,一个 Pod 代表集群上正在运行的一个进程。
可以而同一 Pod 内把 Pod 理解成豌豆荚,的每个容器是一颗颗豌豆。
一个 Pod 由一个或多个容器组成,Pod 中容器共享网络、存储和计算资源,在同一台 Docker 主机上运行。
一个 Pod 里可以运行多个容器,又叫边车模式(SideCar)。而在生产环境中一般都是单个容器或者具有强关联互补的多个容器组成一个 Pod。同一个 Pod 之间的容器可以通过 localhost 互相访问,并且可以挂载 Pod 内所有的数据卷;但是不同的 Pod 之间的容器不能用 localhost 访问,也不能挂载其他 Pod 的数据卷。
Pod 控制器
Pod 控制器是 Pod 启动的一种模版,用来保证在K8S里启动的 Pod 应始终按照用户的预期运行(副本数、生命周期、健康状态检查等)。
K8S 内提供了众多的 Pod 控制器,常用的有以下几种:
1、Deployment:
无状态应用部署。Deployment 的作用是管理和控制 Pod 和 ReplicaSet,管控它们运行在用户期望的状态中。
2、ReplicaSet:
确保预期的 Pod 副本数量。ReplicaSet 的作用就是管理和控制 Pod,管控他们好好干活。但是,ReplicaSet 受控于 Deployment。
可以理解成 Deployment 就是总包工头,主要负责监督底下的工人 Pod 干活,确保每时每刻有用户要求数量的 Pod 在工作。如果一旦发现某个工人 Pod 不行了,就赶紧新拉一个 Pod 过来替换它。而ReplicaSet 就是总包工头手下的小包工头。
从 K8S 使用者角度来看,用户会直接操作 Deployment 部署服务,而当 Deployment 被部署的时候,K8S 会自动生成要求的 ReplicaSet 和 Pod。用户只需要关心 Deployment 而不操心 ReplicaSet。
资源对象 Replication Controller 是 ReplicaSet 的前身,官方推荐用 Deployment 取代 Replication Controller 来部署服务。
3、Daemonset:
确保所有节点运行同一类 Pod,保证每个节点上都有一个此类 Pod 运行,通常用于实现系统级后台任务。
4、Statefulset:
有状态应用部署
5、Job
一次性任务。根据用户的设置,Job 管理的 Pod 把任务成功完成就自动退出了。
6、Cronjob:
周期性计划性任务