图像识别-人脸识别与疲劳检测 - python opencv 计算机竞赛

文章目录

  • 0 前言
  • 1 课题背景
  • 2 Dlib人脸识别
    • 2.1 简介
    • 2.2 Dlib优点
    • 2.3 相关代码
    • 2.4 人脸数据库
    • 2.5 人脸录入加识别效果
  • 3 疲劳检测算法
    • 3.1 眼睛检测算法
    • 3.3 点头检测算法
  • 4 PyQt5
    • 4.1 简介
    • 4.2相关界面代码
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于图像识别的人脸识别与疲劳检测系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 课题背景

为了有效监测驾驶员是否疲劳驾驶、避免交通事故的发⽣,本项目利⽤⼈脸特征点进⾏实时疲劳驾驶检测的新⽅法。对驾驶员驾驶时的⾯部图像进⾏实时监控,⾸先检测⼈脸,并利⽤ERT算法定位⼈脸特征点;然后根据⼈脸眼睛区域的特征点坐标信息计算眼睛纵横⽐EAR来描述眼睛张开程度,根据合适的EAR阈值可判断睁眼或闭眼状态;最后基于EAR实测值和EAR阈值对监控视频计算闭眼时间⽐例(PERCLOS)值度量驾驶员主观疲劳程度,将其与设定的疲劳度阈值进⾏⽐较即可判定是否疲劳驾驶。

2 Dlib人脸识别

2.1 简介

Dlib是一个基于c++开发的开源数据工具库,其中包含了不少的机器学习的成熟算法与模型,相对于tensorflow和PyTorch,它用于图像处理以及人脸面部特征提取、分类及对比这几个方面比较具有通用性和优越性,因此,Dlib正在越来越广泛地应用在人脸识别技术领域。
Dlib具有独立使用的可移植代码。Dlib中的代码使用c++语言进行开发而成,使用独立封装,在不借助第三方数据库的情况下,可以直接移植到自己所需要设计的项目中进行使用。

2.2 Dlib优点

  • Dlib拥有全面的文档说明。作为一个开源的人脸数据库训练集,Dlib中有很多功能齐全的程序和文件,从人性化的角度而言的,Dlib在这一点上做的是非常不错的,因为它为每一个程序文档和文件都做了相对应的注释,这样开发者就可以迅速准确的调集程序文档来完成自己所需要的项目功能。

  • Dlib涵盖了支持功能完备的深度学习以及图像处理的各类算法。Dlib为开发者提供了机器深度学习的各类成熟的完备算法,并且在图像处理方面也为开发者带来了能够解决大多数实质问题的优良算法。例如基于SVM的递归和分类算法,以及专门用于面对大规模分类和递归的降维算法。当然还有能够对未知函数进行预分类和预测的相关向量机,其分类和预测训练是基于贝叶斯框架。

2.3 相关代码

    import` `matplotlib.pyplot as pltimport` `dlibimport` `numpy as npimport` `globimport` `re#正脸检测器detector``=``dlib.get_frontal_face_detector()#脸部关键形态检测器sp``=``dlib.shape_predictor(r``"D:LBJAVAscriptshape_predictor_68_face_landmarks.dat"``)#人脸识别模型facerec ``=` `dlib.face_recognition_model_v1(r``"D:LBJAVAscriptdlib_face_recognition_resnet_model_v1.dat"``)#候选人脸部描述向量集descriptors``=``[]photo_locations``=``[]for` `photo ``in` `glob.glob(r``'D:LBJAVAscriptfaces*.jpg'``):``photo_locations.append(photo)``img``=``plt.imread(photo)``img``=``np.array(img)``#开始检测人脸``dets``=``detector(img,``1``)``for` `k,d ``in` `enumerate``(dets):``#检测每张照片中人脸的特征``shape``=``sp(img,d)``face_descriptor``=``facerec.compute_face_descriptor(img,shape)``v``=``np.array(face_descriptor)``descriptors.append(v)#输入的待识别的人脸处理方法相同img``=``plt.imread(r``'D:test_photo10.jpg'``)img``=``np.array(img)dets``=``detector(img,``1``)#计算输入人脸和已有人脸之间的差异程度(比如用欧式距离来衡量)differences``=``[]for` `k,d ``in` `enumerate``(dets):``shape``=``sp(img,d)``face_descriptor``=``facerec.compute_face_descriptor(img,shape)``d_test``=``np.array(face_descriptor)``#计算输入人脸和所有已有人脸描述向量的欧氏距离``for` `i ``in` `descriptors:``distance``=``np.linalg.norm(i``-``d_test)``differences.append(distance)#按欧式距离排序 欧式距离最小的就是匹配的人脸candidate_count``=``len``(photo_locations)candidates_dict``=``dict``(``zip``(photo_locations,differences))candidates_dict_sorted``=``sorted``(candidates_dict.items(),key``=``lambda` `x:x[``1``])#matplotlib要正确显示中文需要设置plt.rcParams[``'font.family'``] ``=` `[``'sans-serif'``]plt.rcParams[``'font.sans-serif'``] ``=` `[``'SimHei'``]plt.rcParams[``'figure.figsize'``] ``=` `(``20.0``, ``70.0``)ax``=``plt.subplot(candidate_count``+``1``,``4``,``1``)ax.set_title(``"输入的人脸"``)ax.imshow(img)for` `i,(photo,distance) ``in` `enumerate``(candidates_dict_sorted):``img``=``plt.imread(photo)``face_name``=``""``photo_name``=``re.search(r``'([^\]*).jpg$'``,photo)``if` `photo_name:``face_name``=``photo_name[``1``]``ax``=``plt.subplot(candidate_count``+``1``,``4``,i``+``2``)``ax.set_xticks([])``ax.set_yticks([])``ax.spines[``'top'``].set_visible(``False``)``ax.spines[``'right'``].set_visible(``False``)``ax.spines[``'bottom'``].set_visible(``False``)``ax.spines[``'left'``].set_visible(``False``)``if` `i``=``=``0``:``ax.set_title(``"最匹配的人脸nn"``+``face_name``+``"nn差异度:"``+``str``(distance))``else``:``ax.set_title(face_name``+``"nn差异度:"``+``str``(distance))``ax.imshow(img)plt.show()

2.4 人脸数据库

本项目中将识别到的人脸保存的.db文件中,相关代码如下:

 class CoreUI(QMainWindow):database = './FaceBase.db'trainingData = './recognizer/trainingData.yml'cap = cv2.VideoCapture()captureQueue = queue.Queue()  # 图像队列alarmQueue = queue.LifoQueue()  # 报警队列,后进先出logQueue = multiprocessing.Queue()  # 日志队列receiveLogSignal = pyqtSignal(str)  # LOG信号def __init__(self):super(CoreUI, self).__init__()loadUi('./ui/Core.ui', self)self.setWindowIcon(QIcon('./icons/icon.png'))#self.setFixedSize(1161, 620)'''self.pushButton = QPushButton('rush', self)layout = QVBoxLayout()layout.addWidget(self.pushButton)self.setLayout(layout)'''#self.pushButton.clicked.connect(self.open)=# 图像捕获self.isExternalCameraUsed = Falseself.useExternalCameraCheckBox.stateChanged.connect(lambda: self.useExternalCamera(self.useExternalCameraCheckBox))self.faceProcessingThread = FaceProcessingThread()self.startWebcamButton.clicked.connect(self.startWebcam)#A\B功能开关# 数据库self.initDbButton.setIcon(QIcon('./icons/warning.png'))self.initDbButton.clicked.connect(self.initDb)self.timer = QTimer(self)  # 初始化一个定时器self.timer.timeout.connect(self.updateFrame)

2.5 人脸录入加识别效果

录入过程
在这里插入图片描述

识别效果
在这里插入图片描述

3 疲劳检测算法

该系统采用Dlib库中人脸68个关键点检测shape_predictor_68_face_landmarks.dat的dat模型库及视频中的人脸,之后返回人脸特征点坐标、人脸框及人脸角度等。本系统利用这68个关键点对驾驶员的疲劳状态进行检测,算法如下:

1. 初始化Dlib的人脸检测器(HOG),然后创建面部标志物预测;
2. 使用dlib.get_frontal_face_detector() 获得脸部位置检测器;
3. 使用dlib.shape_predictor获得脸部特征位置检测器;
4. 分别获取左、右眼面部标志的索引;
5. 打开cv2本地摄像头。

Dlib库68个特征点模型如图所示:
在这里插入图片描述

3.1 眼睛检测算法

基于EAR算法的眨眼检测,当人眼睁开时,EAR在某个值域范围内波动,当人眼闭合时,EAR迅速下降,理论上接近于0。当EAR低于某个阈值时,眼睛处于闭合状态;当EAR由某个值迅速下降至小于该阈值,再迅速上升至大于该阈值,则判断为一次眨眼。为检测眨眼次数,需要设置同一次眨眼的连续帧数。眨眼速度较快,一般1~3帧即可完成眨眼动作。眼部特征点如图:

在这里插入图片描述

EAR计算公式如下:
在这里插入图片描述
当后帧眼睛宽高比与前一帧差值的绝对值(EAR)大于0.2时,认为驾驶员在疲劳驾驶。(68点landmark中可以看到37-42为左眼,43-48为右眼)
在这里插入图片描述
右眼开合度可以通过以下公式:
在这里插入图片描述
眼睛睁开度从大到小为进入闭眼期,从小到大为进入睁眼期,计算最长闭眼时间(可用帧数来代替)。闭眼次数为进入闭眼、进入睁眼的次数。通过设定单位时间内闭眼次数、闭眼时间的阈值判断人是否已经疲劳了。

相关代码:


# 疲劳检测,检测眼睛和嘴巴的开合程度from scipy.spatial import distance as dist
from imutils.video import FileVideoStream
from imutils.video import VideoStream
from imutils import face_utils
import numpy as np  # 数据处理的库 numpy
import argparse
import imutils
import time
import dlib
import cv2
import math
import time
from threading import Threaddef eye_aspect_ratio(eye):# 垂直眼标志(X,Y)坐标A = dist.euclidean(eye[1], eye[5])  # 计算两个集合之间的欧式距离B = dist.euclidean(eye[2], eye[4])# 计算水平之间的欧几里得距离# 水平眼标志(X,Y)坐标C = dist.euclidean(eye[0], eye[3])# 眼睛长宽比的计算ear = (A + B) / (2.0 * C)# 返回眼睛的长宽比return ear
# 3.2 打哈欠检测算法

基于MAR算法的哈欠检测,利用Dlib提取嘴部的6个特征点,通过这6个特征点的坐标(51、59、53、57的纵坐标和49、55的横坐标)来计算打哈欠时嘴巴的张开程度。当一个人说话时,点51、59、53、57的纵坐标差值增大,从而使MAR值迅速增大,反之,当一个人闭上嘴巴时,MAR值迅速减小。

嘴部主要取六个参考点,如下图:
在这里插入图片描述
计算公式:
在这里插入图片描述
通过公式计算MAR来判断是否张嘴及张嘴时间,从而确定驾驶员是否在打哈欠。阈值应经过大量实验,能够与正常说话或哼歌区分开来。为提高判断的准确度,采用双阈值法进行哈欠检测,即对内轮廓进行检测:结合张口度与张口时间进行判断。Yawn为打哈欠的帧数,N为1
min内总帧数,设双阈值法哈欠检测的阈值为10%,当打哈欠频率Freq>10%时,则认为驾驶员打了1个深度哈欠或者至少连续2个浅哈欠,此时系统进行疲劳提醒。

相关代码:


​ # 疲劳检测,检测眼睛和嘴巴的开合程度

from scipy.spatial import distance as dist
from imutils.video import FileVideoStream
from imutils.video import VideoStream
from imutils import face_utils
import numpy as np  # 数据处理的库 numpy
import argparse
import imutils
import time
import dlib
import cv2
import math
import time
from threading import Threaddef mouth_aspect_ratio(mouth):  # 嘴部A = np.linalg.norm(mouth[2] - mouth[10])  # 51, 59B = np.linalg.norm(mouth[4] - mouth[8])  # 53, 57C = np.linalg.norm(mouth[0] - mouth[6])  # 49, 55mar = (A + B) / (2.0 * C)return mar

相应的演示效果如下:

在这里插入图片描述

3.3 点头检测算法

基于HPE算法的点头检测

HPE(Head Pose
Estimation,HPE)算法步骤:2D人脸关键点检测,3D人脸模型匹配,求解3D点和对应2D点的转换关系,根据旋转矩阵求解欧拉角。检测过程中需要使用世界坐标系(UVW)、相机坐标系(XYZ)、图像中心坐标系(uv)和像素坐标系(xy)。一个物体相对于相机的姿态可以使用旋转矩阵和平移矩阵来表示。

  • 平移矩阵:物体相对于相机的空间位置关系矩阵,用T表示;
  • 旋转矩阵:物体相对于相机的空间姿态关系矩阵,用R表示。

因此必然少不了坐标系转换。如图所示:
在这里插入图片描述
于是世界坐标系(UVW)、相机坐标系(XYZ)、图像中心坐标系(uv)和像素坐标系(xy)四兄弟闪亮登场。相对关系如下:
世界坐标系转换到相机坐标:
在这里插入图片描述
相机坐标系转换到像素坐标系:
在这里插入图片描述
像素坐标系与世界坐标系的关系为:
在这里插入图片描述
图像中心坐标系转换到像素坐标系:
在这里插入图片描述
得到旋转矩阵后,求欧拉角:
在这里插入图片描述
设定参数阈值为0.3,在一个时间段,如10
s内,当低头欧拉角|Pitch|≥20°或者头部倾斜欧拉角|Roll|≥20°的时间比例超过0.3时,则认为驾驶员处于瞌睡状态,发出预警。
在这里插入图片描述
相关效果展示:
在这里插入图片描述

4 PyQt5

4.1 简介

Qt是一个跨平台的 C++ 开发库,主要用来开发图形用户界面程序(GUI),当然也可以开发不带界面的命令行程序。
但Qt 是纯 C++ 开发的,PyQt5是基于图形程序框架Qt5的Python语言实现,由一组Python模块构成。

  • QLabel控件:用来显示文本或图像。

  • QLineEdit窗口控件:提供了一个单页面的单行文本编辑器。

  • QTextEdit窗口控件:提供了一个单页面的多行文本编辑器。

  • QPushButton窗口控件:提供了一个命令按钮。

  • QRadioButton控件:提供了一个单选钮和一个文本或像素映射标签。

  • QCheckBox窗口控件:提供了一个带文本标签的复选框。

  • QspinBox控件:允许用户选择一个值,要么通过按向上/向下键增加/减少当前显示值,要么直接将值输入到输入框中。

  • QScrollBar窗口控件:提供了一个水平的或垂直的滚动条。

  • QSlider控件:提供了一个垂直的或水平的滑动条。

  • QComboBox控件:一个组合按钮,用于弹出列表。

  • QMenuBar控件:提供了一个横向菜单栏。

  • QStatusBar控件:提供了一个适合呈现状态信息的水平条,通常放在QMainWindow的底部。

  • QToolBar控件:提供了一个工具栏,可以包含多个命令按钮,通常放在QMainWindow的顶部。

  • QListView控件:可以显示和控制可选的多选列表,可以设置ListMode或IconMode。

  • QPixmap控件:可以在绘图设备上显示图像,通常放在QLabel或QPushButton类中。

  • Qdialog控件:对话框窗口的基类。

  • QWidget是所有用户界面类的基类,它能接收所有的鼠标、键盘和其他系统窗口事件。没有被嵌入到父窗口中的Widget会被当作一个窗口来调用,当然,它也可以使用setWindowFlags(Qt.WindowFlags)函数来设置窗口的显示效果。QWidget的构造函数可以接收两个参数,其中第一个参数是该窗口的父窗口;第二个参数是该窗口的Flag,也就是- Qt.WindowFlags。根据父窗口来决定Widget是嵌入到父窗口中还是被当作一个独立的窗口来调用,根据Flag来设置Widget窗口的一些属性。

  • QMainWindow(主窗口)一般是应用程序的框架,在主窗口中可以添加所需要的Widget,比如添加菜单栏、工具栏、状态栏等。主窗口通常用于提供一个大的中央窗口控件(如文本编辑或者绘制画布)以及周围的菜单栏、工具栏和状态栏。QMainWindow常常被继承,这使得封装中央控件、菜单栏,工具栏以及窗口状态变得更容易,也可以使用Qt Designer来创建主窗口。

4.2相关界面代码

部分代码

  from PyQt5.QtCore import QTimer, QThread, pyqtSignal, QRegExp, Qtfrom PyQt5.QtGui import QImage, QPixmap, QIcon, QTextCursor, QRegExpValidator,QPainterfrom PyQt5.QtWidgets import *from PyQt5.uic import loadUifrom ui.untitled import Ui_Formfrom core2 import CoreUIfrom dataRecord import DataRecordUIfrom dataManage import DataManageUIfrom ui.pic import Ui_Form1from PyQt5 import QtCoreimport sysimport osfrom PyQt5 import QtGuifrom PyQt5 import QtCorefrom PyQt5.QtWidgets import *from PyQt5.QtCore import *from PyQt5.QtGui import *import sysclass Main(CoreUI,QMainWindow):def __init__(self):super(Main, self).__init__()qssStyle = open(os.path.join('sip/123.qss')).read()self.setStyleSheet(qssStyle)self.setWindowFlag(QtCore.Qt.FramelessWindowHint)#设置无边框  但是按键得重新设置了#self.startWebcamButton()self.startWebcamButton.setStyleSheet("startWebcamButton{color:black}""startWebcamButton:hover{color:red}""startWebcamButton{background-color:rgb(180,180,180)}""startWebcamButton{border:2px}""startWebcamButton{border-radius:10px}""startWebcamButton{padding:2px 4px}""startWebcamButton{font-size:14pt}")self.pushButton.setStyleSheet("#pushButton {color:rgb(255,255,255);border-image:url(sip/anniu.png);text-aligh:left;font-size:18px;font-weight:bold;};")self.pushButton_2.setStyleSheet("#pushButton_2 {color:rgb(255,255,255);border-image:url(sip/anniu.png);text-aligh:left;font-size:18px;font-weight:bold;};")self.pushButton_3.setStyleSheet("#pushButton_3 {color:rgb(255,255,255);border-image:url(sip/anniu.png);text-aligh:left;font-size:18px;font-weight:bold;};")self.pushButton_4.setStyleSheet("#pushButton_4 {color:rgb(255,255,255);border-image:url(sip/anniu.png);text-aligh:left;font-size:18px;font-weight:bold;};")#self.setStyleSheet("color:white")#颜色全变self.pushButton_4.clicked.connect(QCoreApplication.instance().quit)def closewin(self):self.close()def mouseMoveEvent(self, e: QMouseEvent):  # 重写移动事件self._endPos = e.pos() - self._startPosself.move(self.pos() + self._endPos)def mousePressEvent(self, e: QMouseEvent):if e.button() == Qt.LeftButton:self._isTracking = Trueself._startPos = QPoint(e.x(), e.y())def mouseReleaseEvent(self, e: QMouseEvent):if e.button() == Qt.LeftButton:self._isTracking = Falseself._startPos = Noneself._endPos = Nonedef paintEvent(self, a0: QtGui.QPaintEvent) -> None:painter = QPainter(self)pixmap = QPixmap("sip/5.jfif")painter.drawPixmap(self.rect(), pixmap)#self.setupUi(self)'''def open(self):path = r"sip/new"QDesktopServices.openUrl(QUrl.fromLocalFile(path))'''class Child(DataRecordUI,QMainWindow):def __init__(self):super(Child, self).__init__()self.setWindowFlag(QtCore.Qt.FramelessWindowHint)qssStyle = open(os.path.join('sip/123.qss')).read()self.setStyleSheet(qssStyle)#self.setupUi(self)def OPEN(self):self.show()def closewin(self):self.close()def returnmain(self):self.pushButton.clicked.connect(main.show)self.pushButton.clicked.connect(ch.hide)def paintEvent(self, a0: QtGui.QPaintEvent) -> None:painter = QPainter(self)pixmap = QPixmap("sip/5.jfif")painter.drawPixmap(self.rect(), pixmap)class Child1(DataManageUI,QMainWindow):def __init__(self):super(Child1,self).__init__()self.setWindowFlag(QtCore.Qt.FramelessWindowHint)qssStyle = open(os.path.join('sip/123.qss')).read()self.setStyleSheet(qssStyle)def OPEN(self):self.show()def closewin(self):self.close()def returnmain(self):self.pushButton.clicked.connect(main.show)self.pushButton.clicked.connect(ch1.hide)def paintEvent(self, a0: QtGui.QPaintEvent) -> None:painter = QPainter(self)pixmap = QPixmap("sip/5.jfif")painter.drawPixmap(self.rect(), pixmap)class help(Ui_Form,QWidget):def __init__(self):super(help,self).__init__()self.setWindowFlag(QtCore.Qt.FramelessWindowHint)self.setupUi(self)qssStyle = open(os.path.join('sip/123.qss')).read()self.setStyleSheet(qssStyle)'''qssStyle1 = open(os.path.join('sip/123.qss')).read()self.setStyleSheet(qssStyle1)'''def OPEN(self):self.show()def returnmain(self):self.pushButton.clicked.connect(main.show)self.pushButton.clicked.connect(Help.hide)def paintEvent(self, a0: QtGui.QPaintEvent) -> None:painter = QPainter(self)pixmap = QPixmap("sip/5.jfif")painter.drawPixmap(self.rect(), pixmap)class add(Ui_Form1,QWidget):def __init__(self):super(add,self).__init__()#self.setWindowFlag(QtCore.Qt.FramelessWindowHint)self.setupUi(self)self.setWindowFlag(QtCore.Qt.FramelessWindowHint)qssStyle = open(os.path.join('sip/123.qss')).read()self.setStyleSheet(qssStyle)#qssStyle = open(os.path.join('123.qss')).read()self.pushButton.clicked.connect(self.close)#self.setStyleSheet(qssStyle)def OPEN(self):self.show()def paintEvent(self, a0: QtGui.QPaintEvent) -> None:painter = QPainter(self)pixmap = QPixmap("./sip/5.jfif")painter.drawPixmap(self.rect(), pixmap)if __name__ =="__main__":#QtCore.QCoreApplication.setAttribute(QtCore.Qt.AA_EnableHighDpiScaling)app = QApplication(sys.argv)main = Main()ch = Child()ch1 = Child1()Help = help()ADD=add()main.show()#main.setStyleSheet("{border-image:url(sip/background.jpg)}")main.pushButton.clicked.connect(main.hide)main.pushButton.clicked.connect(ch.OPEN)main.pushButton_2.clicked.connect(main.hide)main.pushButton_2.clicked.connect(ch1.OPEN)main.pushButton_3.clicked.connect(main.hide)main.pushButton_3.clicked.connect(Help.OPEN)main.pushButton_11.clicked.connect(ADD.OPEN)ch.pushButton.clicked.connect(ch.returnmain)ch1.pushButton.clicked.connect(ch1.returnmain)Help.pushButton.clicked.connect(Help.returnmain)#ADD.pushButton.clicked.connect(ADD.close)sys.exit(app.exec_())

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/162678.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

threejs(2)-Geometry进阶详解

一、全面讲解UV与应用 在本节中,我们将讨论Three.js中的UV映射,包括UV映射的概念、与顶点位置的关系和区别以及如何在Geometry中设置UV坐标。我们将使用BufferGeometry进行示例说明。 颜色对应 什么是UV映射? UV映射是一种将二维纹理映…

Ubuntu系统如何进行网络连接-连接电脑局域网-物联网开发-Ubuntu系统维护

一、前言 在Ubuntu系统的维护中,我们常常需要对VMware中的Ubuntu虚拟机配置网络连接,以连接服务器下载或安装软件包以及进行网络通信等。 基于上述问题,本文将着重分享Ubuntu配置网络链接的若干方法。 二、网络连接模式 打开VM,右…

【Java 进阶篇】JavaScript 动态表格案例

在这篇博客中,我们将深入了解JavaScript如何创建和操作动态表格。我们将从头开始构建一个动态表格,并逐步添加各种功能,使其能够实现数据的添加、删除和编辑。这个示例将有助于理解如何在前端开发中使用JavaScript创建交互性强大的表格。 准…

网站如何优化加速,让网站降低延迟

优化网站架构 精简页面加载过程:通过消除冗余代码和不必要的图像,并采用CDN资源分发,以减少加载时间。 精心规划内容架构:通过使用恰当的标题和描述,使搜索引擎能够快速理解页面的内涵。 选择性能出众的前端框架&…

RT-Thread学习笔记(三):线程管理

线程管理 线程管理相关概念什么是时间片轮转调度器锁线程运行机制线程的五种状态 动态和静态创建线程区别动态和静态创建线程优缺点RT-Thread动态线程管理函数动态创建线程动态删除线程 RT-Thread静态线程管理函数静态创建线程 线程其他操作线程启动线程延时获得当前执行的线程…

Java并发面试题:(六)悲观锁和乐观锁和Java内存模型和CAS原理

悲观锁和乐观锁的区别 什么是悲观锁? 基本上我们理解的操作前对资源加锁,操作完后释放锁。说的都是悲观锁。悲观锁认为所有的资源都是不安全的,随时会被其他线程操作、更改。所以操作资源前一定要加一把锁、防止其他线程访问。 什么是乐观锁&…

【23种设计模式】装饰器模式

个人主页:金鳞踏雨 个人简介:大家好,我是金鳞,一个初出茅庐的Java小白 目前状况:22届普通本科毕业生,几经波折了,现在任职于一家国内大型知名日化公司,从事Java开发工作 我的博客&am…

Excel·VBA单元格区域数据对比差异标记颜色

之前的一篇博客《ExcelVBA单元格重复值标记颜色》,是对重复的整行标记颜色 而本文是按行对比2个单元格区域的数据,并对有差异的区域(一个单元格区域有的,而另一个单元格区域没有的)标记颜色,且只要存在任意…

单链表经典OJ题:合并有序链表

目录 ​编辑 题目: 图例: 分析: 解法: 解法1: 解法2: 解法的对比: 解法2: 注意事项: 图例: 代码演示: 代码分析: 代码缺点: 重复…

[MySQL]BLOB/TEXT column ‘xxx‘ used in key specification without a key length

报错信息: SQLSTATE[42000]: Syntax error or access violation: 1170 BLOB/TEXT column xxx used in key specification without a key length 原因: MySQL的唯一索引不支持text类型的字段!

C++初阶-类和对象(上)

类和对象(上) 一、面向过程和面向对象初步认识二、类的引入三、类的定义四、类的访问限定符及封装访问限定符封装 五、类的作用域六、类的实例化七、类的对象大小的计算如何计算类对象的大小类对象的存储方式猜测 八、类成员函数的this指针this指针的引出…

网站如何才能不被黑,如何做好网络安全

当企业网站受到攻击时,首页文件可能被篡改,百度快照也可能被劫持并重定向到其他网站。首要任务是加强网站的安全防护。然而,许多企业缺乏建立完善的网站安全防护体系的知识。因此,需要专业的网站安全公司来提供相应的保护措施。今…

番外8.1 配置+管理文件系统

Task01: Linux 文件系统结构; 可以进行Linux操作系统的文件权限管理与方式切换,可以应用磁盘与文件权限管理工具; 01:常见文件系统类型(Ext4[rhel6默认文件管理系统], 存储容量1 EB1073741824 GB; XFS[rhel 7/8默认的文…

Radius OTP完成堡垒机登录认证 安当加密

Radius OTP(One-Time Password)是一种用于身份验证的协议,它通过向用户发送一个一次性密码来验证用户的身份。使用Radius OTP可以实现堡垒机登录,以下是一些实现步骤: 1、安装Radius服务器 首先需要安装Radius服务器…

【量化交易笔记】9.量化投资理论及一般流程

前言 在第7篇文章中指出,量化交易的主要有两方面应用,基于的数据主要是两个类型,如前面讲的用之前的数据预测股价,这类数据我们可归为纵向研究数据,又称时间序列数据,另一类是横截面数据,以称截…

关于CW32单片机pack包安装 KEIL IAR

CW32 系列微控制器软件开发工具入门 芯片包 1. 下载芯片包 官方下载链接:武汉鑫源半导体 2. 安装芯片包 双击芯片包.pack文件 支持 CW32F 系列的 IDE 支持 CW32F 系列的工具链: • • EWARM v7.70 或更高版本 MDK-ARM v5.17 或更高版本 2.1 EW…

Android MediaMetadataRetriever setDataSource failed: status = 0xFFFFFFEA

Android MediaMetadataRetriever setDataSource抛错: java.lang.RuntimeException: setDataSource failed: status 0xFFFFFFEA 原因是 setDataSource(String path) path指向的视频文件大小为0或者是破损视频资源。 Android AppGlideModule,DataFetcher,ModelLoad…

环境变量【使用命令行参数引出环境变量】

前提:命令行参数 大家在写C/C程序的时候肯定见过下面这种情况: main函数里面携带的参数,平常写代码过程中很少用到这两个参数,接下来我们就研究一下 我们也不知道 指针数组argv里面到底保存的是什么,也不知道这个a…

Spring 国际化:i18n

文章目录 i18n概述Java国际化Spring6国际化MessageSource接口使用Spring6国际化 i18n概述 国际化也称作i18n,其来源是英文单词 internationalization的首末字符i和n,18为中间的字符数。由于软件发行可能面向多个国家,对于不同国家的用户&…

Apacheb Shiro 1.2.4反序列化漏洞(CVE-2016-4437)

Apache Shiro 1.2.4反序列化漏洞(CVE-2016-4437) 1 在线漏洞解读: https://vulhub.org/#/environments/shiro/CVE-2016-4437/2 环境搭建 cd /home/kali/vulhub/shiro/CVE-2016-4437启动: sudo docker-compose up -d # 拉取下载并启动sud…