为什么mysql默认RR(repeat read可重复读)隔离级别

为什么默认设置rr?:

隔离级别\解决问题脏读不可重复读幻读
读未提交OOO
读提交OO
重复读
序列化

脏读:
某个事务已更新一份数据,另一个事务在此时读取了 同一份数据,由于某些原因,前一个RollBack操作了操作,则后一个事务所 读取的数据就会是不正确的。

不可重复读:
一个事务的两次查询之中数据不一 致,这可能是两次查询过程中间插入了一个**事务更新**的原有的数据

幻读(Phantom Read):
在一个事务的两次查询中数据笔数不一致,例如有 一个事务查询了几列(Row)数据,而另一个事务却在此时插入了新的几 列数据,先前的事务在接下来的查询中,就会发现有几列数据是它先前 所没有的。


Read Uncommitted(读取未提交内容) RU
在该隔离级别,所有事务都可以看到其他未提交事务的执行结果。本隔离级别 很少用于实际应用,因为它的性能也不比其他级别好多少。读取未提交的数 据,也被称之为脏读(Dirty Read)。

Read Committed(读取提交内容) RC
这是大多数数据库系统的默认隔离级别(但不是 MySQL 默认的)。它满足了 隔离的简单定义:一个事务只能看见已经提交事务所做的改变。这种隔离级别 也支持所谓的不可重复读(Nonrepeatable Read),因为同一事务的其他实例 在该实例处理其间可能会有新的 commit,所以同一 select 可能返回不同结果。

Repeatable Read(可重读) RR
这是 MySQL 的默认事务隔离级别,它确保同一事务的多个实例在并发读取数 据时,会看到同样的数据行。不过理论上,这会导致另一个棘手的问题:幻读 (Phantom Read)。简单的说,幻读指当用户读取某一范围的数据行时,另 一个事务又在该范围内插入了新行,当用户再读取该范围的数据行时,会发现 有新的“幻影” 行。InnoDB 和 Falcon 存储引擎通过多版本并发控制(MVCC, Multiversion Concurrency Control)机制解决了该问题
mvcc相关

共享锁又称为读锁,简称S锁,顾名思义,共享锁就是多个事务对于同一数据可以共享一把锁,都能访问到数据,但是只能读不能修改。
排他锁又称为写锁,简称X锁,顾名思义,排他锁就是不能与其他所并存,如一个事务获取了一个数据行的排他锁,其他事务就不能再获取该行的其他锁,包括共享锁和排他锁,但是获取排他锁的事务是可以对数据就行读取和修改。

对于共享锁大家可能很好理解,就是多个事务只能读数据不能改数据,对于排他锁大家的理解可能就有些差别,我当初就犯了一个错误,以为排他锁锁住一行数据后,其他事务就不能读取和修改该行数据,其实不是这样的。排他锁指的是一个事务在一行数据加上排他锁后,其他事务不能再在其上加其他的锁。mysql InnoDB引擎默认的修改数据语句,update,delete,insert都会自动给涉及到的数据加上排他锁,select语句默认不会加任何锁类型,如果加排他锁可以使用select …for update语句,加共享锁可以使用select … lock in share mode语句。所以加过排他锁的数据行在其他事务种是不能修改数据的,也不能通过for update和lock in share mode锁的方式查询数据,但可以直接通过select …from…查询数据,因为普通查询没有任何锁机制。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/16315.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

3.React 组件化开发

react:版本 18.2.0node: 版本18.19.1脚手架:版本 5.0.1 一、类组件 (一) 一个干净的脚手架 【1】使用已经被废弃的 CRA (create-react-app) create-react-app 已经被废弃,且目前使用会报错,官方已经不推荐使用&…

51单片机(国信长天)矩阵键盘的基本操作

在CT107D单片机综合训练平台上,首先将J5处的跳帽接到1~2引脚,使按键S4~S19按键组成4X4的矩阵键盘。在扫描按键的过程中,发现有按键触发信号后(不做去抖动),待按键松开后,在数码管的第一位显示相应的数字:从左至右&…

【AI赋能】蓝耘智算平台实战指南:3步构建企业级DeepSeek智能助手

蓝耘智算平台实战指南:3步构建企业级DeepSeek智能助手 引言:AI大模型时代的算力革命 在2025年全球AI技术峰会上,DeepSeek-R1凭借其开源架构与实时推理能力,成为首个通过图灵测试的中文大模型。该模型在语言理解、跨模态交互等维…

机器学习 - 词袋模型(Bag of Words)实现文本情感分类的详细示例

为了简单直观的理解模型训练,我这里搜集了两个简单的实现文本情感分类的例子,第一个例子基于朴素贝叶斯分类器,第二个例子基于逻辑回归,通过这两个例子,掌握词袋模型(Bag of Words)实现文本情感…

没有服务器和显卡电脑如何本地化使用deepseek|如何通过API使用满血版deepseek

目录 一、前言二、使用siliconflow硅基流动 API密钥1、注册硅基流动2、创建API密钥3、下载AI客户端4、使用API密钥5、效果演示 三、使用deepseek官方API密钥1、创建API密钥2、使用API密钥3、效果演示 四、总结 一、前言 上篇文章我介绍了如何通过云服务器或者显卡电脑来本地化…

算法学习笔记之贪心算法

导引(硕鼠的交易) 硕鼠准备了M磅猫粮与看守仓库的猫交易奶酪。 仓库有N个房间,第i个房间有 J[i] 磅奶酪并需要 F[i] 磅猫粮交换,硕鼠可以按比例来交换,不必交换所有的奶酪 计算硕鼠最多能得到多少磅奶酪。 输入M和…

oracle执行grant授权sql被阻塞问题处理

一 问题描述 执行普通的grant授权sql(grant select,update on 表名 to 用户名)好几分钟都没反应,跟被阻塞了似的。 二 问题排查 #排查是否有阻塞 用OEM可以看到阻塞信息: 点‘性能’-‘阻塞会话’: 下面那个会话2958是我执行grant sql的…

SSM仓库物品管理系统 附带详细运行指导视频

文章目录 一、项目演示二、项目介绍三、运行截图四、主要代码1.用户登录代码:2.保存物品信息代码:3.删除仓库信息代码: 一、项目演示 项目演示地址: 视频地址 二、项目介绍 项目描述:这是一个基于SSM框架开发的仓库…

Deepseek 接入Word处理对话框(隐藏密钥)

硅基流动邀请码:1zNe93Cp 邀请链接:网页链接 亲测deepseek接入word,自由调用对话,看截图有兴趣的复用代码(当然也可以自己向deepseek提问,帮助你完成接入,但是提问逻辑不一样给出的答案是千差万…

Docker Compose介绍及安装使用MongoDB数据库详解

在现代容器化应用部署中,Docker Compose是一种非常实用的工具,它允许我们通过一个docker-compose.yml文件来定义和运行多容器应用程序。然而,除了Docker之外,Podman也提供了类似的工具——Podman Compose,它允许我们在…

IntelliJ IDEA Console控制台输出成json的配置方式

【IntelliJ IDEA Console控制台输出成json的配置方式】 1.帮助->查找操作 2.搜索注册表 3.ctrlf 搜索pty 控制台右键 结果

基础入门-HTTP数据包红蓝队研判自定义构造请求方法请求头修改状态码判断

知识点: 1、请求头&返回包-方法&头修改&状态码等 2、数据包分析-红队攻击工具&蓝队流量研判 3、数据包构造-Reqable自定义添加修改请求 一、演示案例-请求头&返回包-方法&头修改&状态码等 数据包 客户端请求Request 请求方法 …

react redux用法学习

参考资料: https://www.bilibili.com/video/BV1ZB4y1Z7o8 https://cn.redux.js.org/tutorials/essentials/part-5-async-logic AI工具:deepseek,通义灵码 第一天 安装相关依赖: 使用redux的中间件: npm i react-redu…

机器学习 - 线性回归(最大后验估计)

最大似然估计的一个缺点是当训练数据比较少时会发生过拟合,估计的参数可能不准确.为了避免过拟合,我们可以给参数加上一些先验知识. 一、先从最大似然估计的一个缺点入手 最大似然估计(MLE)在处理小样本数据时,容易发…

2025.2.8——二、Confusion1 SSTI模板注入|Jinja2模板

题目来源:攻防世界 Confusion1 目录 一、打开靶机,整理信息 二、解题思路 step 1:查看网页源码信息 step 2:模板注入 step 3:构造payload,验证漏洞 step 4:已确认为SSTI漏洞中的Jinjia2…

Moretl 增量文件采集工具

永久免费: <下载> <使用说明> 用途 定时全量或增量采集工控机,电脑文件或日志. 优势 开箱即用: 解压直接运行.不需额外下载.管理设备: 后台统一管理客户端.无人值守: 客户端自启动,自更新.稳定安全: 架构简单,兼容性好,通过授权控制访问. 架构 技术架构: Asp…

基于STM32的ADS1230驱动例程

自己在练手项目中用到了ADS1230&#xff0c;根据芯片手册自写的驱动代码&#xff0c;已测可用&#xff0c;希望对将要用到ADS1230芯片的人有所帮助。 芯片&#xff1a;STM32系列任意芯片、ADS1230 环境&#xff1a;使用STM32CubeMX配置引脚、KEIL 部分电路&#xff1a; 代码…

HarmonyOS 5.0应用开发——NodeContainer自定义占位节点

【高心星出品】 文章目录 NodeContainer自定义占位节点案例开发步骤全部代码 NodeContainer自定义占位节点 NodeContainer是用来占位的系统组件&#xff0c;主要用于自定义节点以及自定义节点树的显示&#xff0c;支持组件的通用属性&#xff0c;对通用属性的处理请参考默认左…

26~31.ppt

目录 26.北京主要的景点 题目 解析 27.创新产品展示及说明会 题目​ 解析 28.《小企业会计准则》 题目​ 解析 29.学习型社会的学习理念 题目​ 解析 30.小王-产品展示信息 题目​ 解析 31.小王-办公理念-信息工作者的每一天 题目​ 解析 26.北京主要的景点…

单张照片可生成写实3D头部模型!Adobe提出FaceLift,从单一的人脸图像中重建出360度的头部模型。

FaceLift是Adobe和加州大学默塞德分校推出的单图像到3D头部模型的转换技术,能从单一的人脸图像中重建出360度的头部模型。FaceLift基于两阶段的流程实现:基于扩散的多视图生成模型从单张人脸图像生成一致的侧面和背面视图;生成的视图被输入到GS-LRM重建器中,产出详细的3D高斯表…