1.单例模式介绍
单例模式(Singleton Pattern)是 Java 中最简单的设计模式之一,此模式保证
某个类在运行期间,只有一个实例对外提供服务,而这个类被称为单例类。
2.使用单例模式要做的两件事
- 保证一个类只有一个实例
- 为该实例提供一个全局访问节点
3. 单例模式结构
4.1 单例模式之饿汉式:
在类加载期间初始化静态实例,保证 instance 实例的创建是线程安全的 ( 实例在
类加载时实例化,有JVM保证线程安全).
特点: 不支持延迟加载实例(懒加载) , 此中方式类加载比较慢,但是获取实例对象
比较快。
问题: 该对象足够大的话,而一直没有使用就会造成内存的浪费。
public class Singleton_01 {//1. 私有构造方法private Singleton_01(){}//2. 在本类中创建私有静态的全局对象private static Singleton_01 instance = new Singleton_01();//3. 提供一个全局访问点,供外部获取单例对象public static Singleton_01 getInstance(){return instance;}}
4.2懒汉式(线程不安全)
此种方式的单例实现了懒加载,只有调用getInstance方法时 才创建对象.但是如
果是多线程情况,会出现线程安全问题.
public class Singleton_02 {//1. 私有构造方法private Singleton_02(){}//2. 在本类中创建私有静态的全局对象private static Singleton_02 instance;//3. 通过判断对象是否被初始化,来选择是否创建对象public static Singleton_02 getInstance(){if(instance == null){instance = new Singleton_02();}return instance;}}
注意:
假设在单例类被实例化之前,有两个线程同时在获取单例对象,线程A在执
行完if (instance == null) 后,线程调度机制将 CPU 资源分配给线程B,此
时线程B在执行 if (instance == null)时也发现单例类还没有被实例化,这样
就会导致单例类被实例化两次。为了防止这种情况发生,需要对
getInstance() 方法同步处理。改进后的懒汉模式.
懒汉式(线程安全)
原理: 使用同步锁 synchronized 锁住 创建单例的方法 ,防止多个线程同时调
用,从而避免造成单例被多次创建。
public class Singleton_03 {//1. 私有构造方法private Singleton_03(){}//2. 在本类中创建私有静态的全局对象private static Singleton_03 instance;//3. 通过添加synchronize,保证多线程模式下的单例对象的唯一性public static synchronized Singleton_03 getInstance(){if(instance == null){instance = new Singleton_03();}return instance;}}
缺点:
懒汉式的缺点也很明显,我们给 getInstance() 这个方法加了一把大锁
(synchronzed),导致这个函数的并发度很低。量化一下的话,并发度
是 1,也就相当于串行操作了。而这个函数是在单例使用期间,一直会被调
用。如果这个单例类偶尔会被用到,那这种实现方式还可以接受。但是,
如果频繁地用到,那频繁加锁、释放锁及并发度低等问题,会导致性能瓶
颈,这种实现方式就不可取了。
双重校验
饿汉式不支持延迟加载,懒汉式有性能问题,不支持高并发。那我们再来看一
种既支持延迟加载、又支持高并发的单例实现方式,也就是双重检测实现方
式。
实现步骤:
- 在声明变量时使用了 volatile 关键字,其作用有两个:
保证变量的可见性:当一个被volatile关键字修饰的变量被一个线程修改的时
候,其他线程可以立刻得到修改之后的结果。
屏蔽指令重排序:指令重排序是编译器和处理器为了高效对程序进行优化的手
段,它只能保证程序执行的结果时正确的,但 是无法保证程序的操作顺序与代
码顺序一致。这在单线程中不会构成问题,但是在多线程中就会出现问题。 - 将同步方法改为同步代码块. 在同步代码块中使用二次检查,以保证其不被
重复实例化 同时在调用getInstance()方法时不进行同步锁,效率高。
public class Singleton_04 {//1. 私有构造方法private Singleton_04(){}//2. 使用 volatile保证变量的可见性private volatile static Singleton_04 instance = null;//3. 对外提供静态方法获取对象public static Singleton_04 getInstance(){//第一次判断,如果instance不为null,不进入抢锁阶段,直接返回实例if(instance == null){synchronized (Singleton_04.class){//抢到锁之后再次进行判断是否为nullif(instance == null){instance = new Singleton_04();}}}return instance;}}
静态内部类
原理 根据静态内部类 的特性(外部类的加载不影响内部类),同时解决了按
需加载、线程安全的问题,同时实现简洁。
- 在静态内部类里创建单例,在装载该内部类时才会去创建单例
- 线程安全:类是由 JVM 加载,而 JVM 只会加载1遍,保证只有1个单例
public class Singleton_05 {private static class SingletonHandler{private static Singleton_05 instance = new Singleton_05();}private Singleton_05(){}public static Singleton_05 getInstance(){return SingletonHandler.instance;}}
反射对于单例的破坏
反射技术过于强大,它可以通过 setAccessible() 来修改构造器,字段,方法
的可见性。单例模式的构造方法是私有的,如果将其可见性设为 public ,那么
将无法控制对象的创建。
public class Test_Reflect {public static void main(String[] args) {try {//反射中,欲获取一个类或者调用某个类的方法,首先要获取到该类的Class 对象。Class<Singleton_05> clazz = Singleton_05.class;//getDeclaredXxx: 不受权限控制的获取类的成员.Constructor c = clazz.getDeclaredConstructor(null);//设置为true,就可以对类中的私有成员进行操作了c.setAccessible(true);Object instance1 = c.newInstance();Object instance2 = c.newInstance();System.out.println(instance1 == instance2);} catch (Exception e) {e.printStackTrace();}}}
解决方法之一: 在单例类的构造方法中 添加判断 instance != null 时,直接抛
出异常
public class Singleton_05 {private static class SingletonHandler{private static Singleton_05 instance = new Singleton_05();}private Singleton_05(){if(SingletonHandler.instance != null){throw new RuntimeException("不允许非法访问!");}}public static Singleton_05 getInstance(){return SingletonHandler.instance;}
}
上面的这种方式使代码简洁性遭到破坏,设计不够优雅.
序列化对于单例的破坏
public class Test_Serializable {@Testpublic void test() throws Exception{//序列化对象输出流ObjectOutputStream oos = new ObjectOutputStream(newFileOutputStream("tempFile.obj"));oos.writeObject(Singleton.getInstance());//序列化对象输入流File file = new File("tempFile.obj");ObjectInputStream ois = new ObjectInputStream(new FileInputStream(file));Singleton Singleton = (Singleton) ois.readObject();System.out.println(Singleton);System.out.println(Singleton.getInstance());//判断是否是同一个对象System.out.println(Singleton.getInstance() == Singleton);//false}
}class Singleton implements Serializable{private volatile static Singleton singleton;private Singleton() {}public static Singleton getInstance() {if (singleton == null) {synchronized (Singleton.class) {if (singleton == null) {singleton = new Singleton();}}}return singleton;}
}
输出结构为false,说明:
通过对Singleton的序列化与反序列化得到的对象是一个新的对象,这就 破坏了
Singleton的单例性 。
解决方案:
/**
* 解决方案:只要在Singleton类中定义readResolve就可以解决该问题
* 程序会判断是否有readResolve方法,如果存在就在执行该方法,如果不存在-
-就创建一个对象
*/
private Object readResolve() {return singleton;
}
readOrdinaryObject方法的代码片段
private Object readOrdinaryObject(boolean unshared)
throws IOException
{
//此处省略部分代码
Object obj;
try {
//通过反射创建的这个obj对象,就是本方法要返回的对象,也
可以暂时理解为是ObjectInputStream的readObject返回的对象。
//isInstantiable:如果一个serializable的类可以在运行
时被实例化,那么该方法就返回true
//desc.newInstance:该方法通过反射的方式调用无参构造方
法新建一个对象。
obj = desc.isInstantiable() ? desc.newInstance()
: null;
} catch (Exception ex) {
throw (IOException) new InvalidClassException(
desc.forClass().getName(),
"unable to create instance").initCause(ex);
}
return obj;
}
5 枚举(推荐方式)
public enum Singleton_06{INSTANCE;private Object data;public Object getData() {return data;}public void setData(Object data) {this.data = data;}public static Singleton_06 getInstance(){return INSTANCE;}
}