线性代数-Python-01:向量的基本运算 - 手写Vector及numpy的基本用法

文章目录

  • 一、代码仓库
  • 二、向量的基本运算
    • 2.1 加法
    • 2.2 数量乘法
    • 2.3 向量运算的基本性质
    • 2.4 零向量
    • 2.5 向量的长度
    • 2.6 单位向量
    • 2.7 点乘/内积:两个向量的乘法 --答案是一个标量
  • 三、手写Vector代码
    • 3.1 在控制台测试__repr__和__str__方法
    • 3.2 创建实例测试代码
    • 3.3 完整代码
      • Vector.py
      • _globals.py
      • main_vector.py
      • main_numpy_vector.py

一、代码仓库

https://github.com/Chufeng-Jiang/Python-Linear-Algebra-for-Beginner/tree/main

二、向量的基本运算

2.1 加法

在这里插入图片描述

2.2 数量乘法

在这里插入图片描述

2.3 向量运算的基本性质

在这里插入图片描述

2.4 零向量

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.5 向量的长度

在这里插入图片描述在这里插入图片描述

2.6 单位向量

单位向量叫做 u hat
在这里插入图片描述
在这里插入图片描述

2.7 点乘/内积:两个向量的乘法 --答案是一个标量

在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述

在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、手写Vector代码

3.1 在控制台测试__repr__和__str__方法

在这里插入图片描述

3.2 创建实例测试代码

from playLA.Vector import Vectorif __name__ == "__main__":vec = Vector([5, 2])print(vec)print("len(vec) = {}".format(len(vec)))print("vec[0] = {}, vec[1] = {}".format(vec[0], vec[1]))

在这里插入图片描述

3.3 完整代码

在这里插入图片描述

Vector.py

import math
from ._globals import EPSILON
class Vector:def __init__(self, lst):"""__init__ 代表类的构造函数双下划线开头的变量 例如_values,代表类的私有成员lst是个引用,list(lst)将值复制一遍,防止用户修改值"""self._values = list(lst)def dot(self, another):"""向量点乘,返回结果标量"""assert len(self) == len(another), \"Error in dot product. Length of vectors must be same."return sum(a * b for a, b in zip(self, another))def norm(self):"""返回向量的模"""return math.sqrt(sum(e**2 for e in self))def normalize(self):"""归一化,规范化返回向量的单位向量此处设计到了除法: def __truediv__(self, k):"""if self.norm() < EPSILON:raise ZeroDivisionError("Normalize error! norm is zero.")return Vector(self._values) / self.norm()# return 1 / self.norm() * Vector(self._values)# return Vector([e / self.norm() for e in self])def __truediv__(self, k):"""返回数量除法的结果向量:self / k"""return (1 / k) * self@classmethoddef zero(cls, dim):"""返回一个dim维的零向量@classmethod 修饰符对应的函数不需要实例化,不需要 self 参数,但第一个参数需要是表示自身类的cls参数,可以来调用类的属性,类的方法,实例化对象等。"""return cls([0] * dim)def __add__(self, another):"""向量加法,返回结果向量"""assert len(self) == len(another), \"Error in adding. Length of vectors must be same."# return Vector([a + b for a, b in zip(self._values, another._values)])return Vector([a + b for a, b in zip(self, another)])def __sub__(self, another):"""向量减法,返回结果向量"""assert len(self) == len(another), \"Error in subtracting. Length of vectors must be same."return Vector([a - b for a, b in zip(self, another)])def __mul__(self, k):"""返回数量乘法的结果向量:self * k"""return Vector([k * e for e in self])def __rmul__(self, k):"""返回数量乘法的结果向量:k * selfself本身就是一个列表"""return self * kdef __pos__(self):"""返回向量取正的结果向量"""return 1 * selfdef __neg__(self):"""返回向量取负的结果向量"""return -1 * selfdef __iter__(self):"""返回向量的迭代器"""return self._values.__iter__()def __getitem__(self, index):"""取向量的第index个元素"""return self._values[index]def __len__(self):"""返回向量长度(有多少个元素)"""return len(self._values)def __repr__(self):"""打印显示:Vector([5, 2])"""return "Vector({})".format(self._values)def __str__(self):"""打印显示:(5, 2)"""return "({})".format(", ".join(str(e) for e in self._values))

_globals.py

# 包中的变量,但是对包外不可见,因此使用“_”开头
EPSILON = 1e-8

main_vector.py

from playLA.Vector import Vectorif __name__ == "__main__":vec = Vector([5, 2])print(vec)print("len(vec) = {}".format(len(vec)))print("vec[0] = {}, vec[1] = {}".format(vec[0], vec[1]))vec2 = Vector([3, 1])print("{} + {} = {}".format(vec, vec2, vec + vec2))print("{} - {} = {}".format(vec, vec2, vec - vec2))print("{} * {} = {}".format(vec, 3, vec * 3))print("{} * {} = {}".format(3, vec, 3 * vec))print("+{} = {}".format(vec, +vec))print("-{} = {}".format(vec, -vec))zero2 = Vector.zero(2)print(zero2)print("{} + {} = {}".format(vec, zero2, vec + zero2))print("norm({}) = {}".format(vec, vec.norm()))print("norm({}) = {}".format(vec2, vec2.norm()))print("norm({}) = {}".format(zero2, zero2.norm()))print("normalize {} is {}".format(vec, vec.normalize()))print(vec.normalize().norm())print("normalize {} is {}".format(vec2, vec2.normalize()))print(vec2.normalize().norm())try:zero2.normalize()except ZeroDivisionError:print("Cannot normalize zero vector {}.".format(zero2))print("========点乘:========")print(vec.dot(vec2))

main_numpy_vector.py

import numpy as npif __name__ == "__main__":print(np.__version__)# np.array 基础print("========np.array 基础========")lst = [1, 2, 3]lst[0] = "Linear Algebra"print(lst)print("========vec = np.array([1, 2, 3])========")vec = np.array([1, 2, 3])print(vec)# vec[0] = "Linear Algebra"# vec[0] = 666# print(vec)print("========np.array的创建========")# np.array的创建print(np.zeros(5))print(np.ones(5))print(np.full(5, 666))print("========np.array的基本属性========")# np.array的基本属性print(vec)print("size =", vec.size)print("size =", len(vec))print(vec[0])print(vec[-1])print(vec[0: 2])print(type(vec[0: 2]))print("========np.array的基本运算========")# np.array的基本运算vec2 = np.array([4, 5, 6])print("{} + {} = {}".format(vec, vec2, vec + vec2))print("{} - {} = {}".format(vec, vec2, vec - vec2))print("{} * {} = {}".format(2, vec, 2 * vec))print("没有数学意义的乘法:{} * {} = {}".format(vec, vec2, vec * vec2))print("{}.dot({}) = {}".format(vec, vec2, vec.dot(vec2)))print("========求模========")print(np.linalg.norm(vec))print("========归一化========")print(vec / np.linalg.norm(vec))print("========单位向量========")print(np.linalg.norm(vec / np.linalg.norm(vec)))print("========零向量会报错========")zero3 = np.zeros(3)print(zero3 / np.linalg.norm(zero3))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/165557.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

sql中的group by 举例子数据库日期带汉字转换2023年10月18天

sql中的group by 举例子 sql中 group by多个字段&#xff0c;对所有字段做group by_group by 多个字段_Foools的博客-CSDN博客 【精选】玩转SQL语句之group by 多字段分组查询与having子句&#xff0c;一篇解决你的疑惑&#xff01;_sql多个分组查询-CSDN博客 select to_char…

【PACS系统源码】与医院HIS系统双向数据交换,实现医学影像集成与影像后处理功能

​医院医学影像PACS系统源码&#xff0c;集成三维影像后处理功能&#xff0c;包括三维多平面重建、三维容积重建、三维表面重建、三维虚拟内窥镜、最大/小密度投影、心脏动脉钙化分析等功能。系统功能强大&#xff0c;代码完整。 PACS系统与医院HIS实现双向数据交换&#xff0c…

语音芯片KT142C两种音频输出方式PWM和DAC的区别

目录 语音芯片KT142C两种音频输出方式PWM和DAC的区别 一般的语音芯片&#xff0c;输出方式&#xff0c;无外乎两种&#xff0c;即dac输出&#xff0c;或者PWM输出 其中dac的输出&#xff0c;一般应用场景都是外挂功放芯片&#xff0c;实现声音的放大&#xff0c;比如常用的音箱…

【常用图像增强技术,Python-opencv】

文章目录 常用图像增强技术调整大小灰度变换标准化随机旋转中心剪切随机裁剪高斯模糊亮度、对比度和饱和度调节水平翻转垂直翻转高斯噪声随机块中心区域 常用图像增强技术 图像增强技术是常用于数据增强的方法&#xff0c;可以帮助增加数据集中图像的多样性&#xff0c;提高深…

ICMPv6与NDP

1. ICMPv6简介 ICMP概述 Internet控制消息协议ICMP (Internet Control Message Protocol)是IP协议的辅助协议。 ICMP协议用来在网络设备间传递各种差错和控制信息&#xff0c;对于收集各种网络信息、诊断和排除各种网络故障等方面起着至关重要的作用。 ICMP差错检查 ICMP …

【Ant Design Table + React】表格列伸缩实现

需求背景&#xff1a;需要实现Antd Table 组件的列伸缩&#xff0c;宽度可以拖拽 在Antd 3.x 的版本中是保留的列伸缩的Demo例子的&#xff1a; 借助 react-resizable 可以实现伸缩列。 # npm 安装 npm install react-resizable --save# yarn 安装 yarn add react-resizable参…

使用Simple JWT提供认证服务(详细介绍access_token和refresh_token的使用)

文章目录 基本概念JSON Web Token&#xff08;JWT&#xff09;Simple JWT 主要用途Cookie、Session、Token的区别CookieSessionToken Token续签access_token 和 refresh_token时效设置 基本概念 JSON Web Token&#xff08;JWT&#xff09; JSON Web Token&#xff08;JWT&am…

Python 自动化测试框架unittest与pytest的区别!

引言 这篇文章主要讲unittest与pytest的区别&#xff0c;pytest相对unittest而言&#xff0c;代码简洁&#xff0c;使用便捷灵活&#xff0c;并且插件很丰富。 Unittest vs Pytest 主要从用例编写规则、用例的前置和后置、参数化、断言、用例执行、失败重运行和报告这几个方面…

从手动操作到自动化管理,如何实现企业身份业务全面自动化?

在数字化时代&#xff0c;身份管理已经成为了企业和组织不可或缺的一部分&#xff0c;企业对于管理员工、客户和合作伙伴的身份信息和访问权限的需求变得愈发复杂。身份管理不仅仅是一项必要的任务&#xff0c;更是确保业务流畅运营和数据安全的关键因素。然而&#xff0c;传统…

ESP32C3 LuatOS TM1650②动态显示累加整数

--注意:因使用了sys.wait()所有api需要在协程中使用 -- 用法实例 PROJECT "ESP32C3_TM1650" VERSION "1.0.0" _G.sys require("sys") local tm1650 require "tm1650"-- 拆分整数&#xff0c;并把最低位数存放在数组最大索引处 loc…

冒泡排序、插入排序、选择排序和快速排序的原理

下面是对冒泡排序、插入排序、选择排序和快速排序的原理的简要解释&#xff1a; 冒泡排序&#xff08;Bubble Sort&#xff09;&#xff1a;冒泡排序是一种简单的排序算法。它通过多次迭代比较相邻的元素&#xff0c;并交换它们的位置&#xff0c;使得较大&#xff08;或较小&…

中间件安全-CVE复现IISApacheTomcatNginx漏洞复现

目录 中间件安全&CVE复现&IIS&Apache&Tomcat&Nginx漏洞复现中间件-IIS安全问题中间件-Nginx安全问题漏洞复现Nginx 解析漏洞复现Nginx 文件名逻辑漏洞 中间件-Apache-RCE&目录遍历&文件解析等安全问题漏洞复现漏洞复现CVE_2021_42013 RCE代码执行&…

python二次开发Solidworks:读取立方体的高度

在SW中新建一个零件文档&#xff0c;建立一个立方体&#xff0c;长度和宽度自定义&#xff0c;高度100mm&#xff0c;下面通过python实现读取该立方体的高度&#xff1a; import win32com.client as win32 import pythoncomswApp win32.Dispatch(sldworks.application) swApp.…

kafka、zookeeper、flink测试环境、docker

1、kafka环境单点 根据官网版本说明(3.6.0)发布&#xff0c;zookeeper依旧在使用状态&#xff0c;预期在4.0.0大版本的时候彻底抛弃zookeeper使用KRaft(Apache Kafka)官方并给出了zk迁移KR的文档 2、使用docker启动单点kafka 1、首先将kafka启动命令&#xff0c;存储为.servi…

选择最佳的项目管理工具:推荐哪一个?

项目管理工具推荐哪个&#xff1f;Zoho Projects项目管理工具为各类团队提供卓越的项目管理解决方案。 1、全面管理各类团队项目 Zoho Projects是一款全面的项目管理工具&#xff0c;具备简化工作流程和提高团队生产力的功能。无论是软件开发与DevOps&#xff0c;还是人力资源与…

Elasticsearch学习笔记

1.核心概念 bucket: 一个数据分组&#xff08;类似于sql group by以后的数据&#xff09;metric&#xff1a;对bucket执行的某种聚合分析的操作&#xff0c;比如说求平均值&#xff0c;最大值&#xff0c;最小值。一些系列的统计方法(类似 select count(1) MAX MIN AVG) 请…

后台交互-首页->与后台数据进行交互,wsx的使用

与后台数据进行交互wsx的使用 1.与后台数据进行交互 // index.js // 获取应用实例 const app getApp() const apirequire("../../config/app.js") const utilrequire("../../utils/util.js") Page({data: {imgSrcs:[{"img": "https://cd…

三辊闸机的应用领域和特点

三辊闸机是一种常用于门禁控制的设备&#xff0c;它具有以下应用和优点&#xff1a; 应用&#xff1a; 门禁控制&#xff1a;三辊闸机可以用于各种场合的门禁控制&#xff0c;如小区、写字楼、学校、医院等。考勤管理&#xff1a;三辊闸机可以与考勤系统集成&#xff0c;用于…

【数据结构】算法的时间复杂度和空间复杂度

目录 1. 什么是数据结构&#xff1f; 2.什么是算法&#xff1f; 3.算法效率 4.时间复杂度 4.1时间复杂度的概念 4.2大O的渐进表示法 4.3常见时间复杂度计算举例 4.3.1冒泡排序&#xff1a; 4.3.2二分查找&#xff1a; 4.3.3递归阶乘 4.3.4斐波那契数列 4.4例题&…

Elasticsearch实践:ELK+Kafka+Beats对日志收集平台的实现

可以在短时间内搜索和分析大量数据。 Elasticsearch 不仅仅是一个全文搜索引擎&#xff0c;它还提供了分布式的多用户能力&#xff0c;实时的分析&#xff0c;以及对复杂搜索语句的处理能力&#xff0c;使其在众多场景下&#xff0c;如企业搜索&#xff0c;日志和事件数据分析等…