Elasticsearch实践:ELK+Kafka+Beats对日志收集平台的实现

可以在短时间内搜索和分析大量数据。

Elasticsearch 不仅仅是一个全文搜索引擎,它还提供了分布式的多用户能力,实时的分析,以及对复杂搜索语句的处理能力,使其在众多场景下,如企业搜索,日志和事件数据分析等,都有广泛的应用。

本文将介绍 ELK+Kafka+Beats 对日志收集平台的实现。


文章目录

        • 1、关于ELK与BKELK
          • 1.1、ELK架构及其影响
          • 1.2、基于BKLEK架构的日志分析系统实现
        • 2、利用ELK+Kafka+Beats来实现一个统一日志平台
          • 2.1、应用场景
          • 2.2、环境准备
          • 2.3、基于Docker的ES部署
          • 2.4、基于Docker的kibana部署
          • 2.5、基于Docker的Zookeeper部署
          • 2.6、基于Docker的Kafka部署
          • 2.7、基于Docker的Logstash部署
          • 2.8、基于Docker的Filebeat部署


1、关于ELK与BKELK
1.1、ELK架构及其影响

当我们在开源日志分析系统的领域,谈及 ELK 架构可谓是家喻户晓。然而,这个生态系统并非 Elastic 有意为之,毕竟 Elasticsearch 的初衷是作为一个分布式搜索引擎。其广泛应用于日志系统,实则是一种意料之外,这是社区用户的推动所致。如今,众多云服务厂商在推广自己的日志服务时,往往以 ELK 作为参照标准,由此可见,ELK 的影响力之深远。

ELK 是 Elasticsearch、Logstash 和 Kibana 的首字母缩写,这三个产品都是 Elastic 公司的开源项目,通常一起使用以实现数据的搜索、分析和可视化。

  1. Elasticsearch:一个基于 Lucene 的搜索服务器。它提供了一个分布式、多租户的全文搜索引擎,具有 HTTP 网络接口和无模式 JSON 文档。

  2. Logstash:是一个服务器端数据处理管道,它可以同时从多个来源接收数据,转换数据,然后将数据发送到你选择的地方。

  3. Kibana:是一个用于 Elasticsearch 的开源数据可视化插件。它提供了查找、查看和交互存储在 Elasticsearch 索引中的数据的方式。你可以使用它进行高级数据分析和可视化你的数据等。

这三个工具通常一起使用,以便从各种来源收集、搜索、分析和可视化数据。

1.2、基于BKLEK架构的日志分析系统实现

实际上,在流行的架构中并非只有 ELKB。当我们利用 ELKB 构建一套日志系统时,除了 Elasticsearch、Logstash、Kibana、beats 之外,还有一个被广泛应用的工具 —— Kafka。在这个体系中,Kafka 的角色尤为重要。作为一个中间件和缓冲区,它能够提升吞吐量,隔离峰值影响,缓存日志数据,快速落盘。同时,通过 producer/consumer 模式,使得 Logstash 能够进行横向扩展,还能用于数据的多路分发。因此,大多数情况下,我们看到的实际架构,按照数据流转的顺序排列,应该是 BKLEK 架构。

image-20231021004441222

BKLEK 架构即 ELK+Kafka+Beats ,这是一种常见的大数据处理和分析架构。在这个架构中:

  1. Beats:是一种轻量级的数据采集器,用于从各种源(如系统日志、网络流量等)收集数据,并将数据发送到 Kafka 或 Logstash。

  2. Kafka:是一个分布式流处理平台,用于处理和存储实时数据。在这个架构中,Kafka 主要用于作为一个缓冲区,接收来自 Beats 的数据,并将数据传输到 Logstash。

  3. Logstash:是一个强大的日志管理工具,可以从 Kafka 中接收数据,对数据进行过滤和转换,然后将数据发送到 Elasticsearch。

  4. Elasticsearch:是一个分布式的搜索和分析引擎,用于存储、搜索和分析大量数据。

  5. Kibana:是一个数据可视化工具,用于在 Elasticsearch 中搜索和查看存储的数据。

这种架构的优点是:

  • 可以处理大量的实时数据。
  • Kafka 提供了一个强大的缓冲区,可以处理高速流入的数据,保证数据的完整性。
  • Logstash 提供了强大的数据处理能力,可以对数据进行各种复杂的过滤和转换。
  • Elasticsearch 提供了强大的数据搜索和分析能力。
  • Kibana 提供了直观的数据可视化界面。

这种架构通常用于日志分析、实时数据处理和分析、系统监控等场景。


2、利用ELK+Kafka+Beats来实现一个统一日志平台
2.1、应用场景

利用 ELK+Kafka+Beats 来实现一个统一日志平台,这是一个专门针对大规模分布式系统日志进行统一采集、存储和分析的 APM 工具。在分布式系统中,众多服务部署在不同的服务器上,一个客户端的请求可能会触发后端多个服务的调用,这些服务可能会互相调用或者一个服务会调用其他服务,最终将请求结果返回并在前端页面上展示。如果在这个过程中的任何环节出现异常,开发和运维人员可能会很难准确地确定问题是由哪个服务调用引起的。统一日志平台的作用就在于追踪每个请求的完整调用链路,收集链路上每个服务的性能和日志数据,从而使开发和运维人员能够快速发现并定位问题。

统一日志平台通过采集模块、传输模块、存储模块、分析模块实现日志数据的统一采集、存储和分析,结构图如下:

img

为了实现海量日志数据的收集和分析,首先需要解决的是如何处理大量的数据信息。在这个案例中,我们使用 Kafka、Beats 和 Logstash 构建了一个分布式消息队列平台。具体来说,我们使用 Beats 采集日志数据,这相当于在 Kafka 消息队列中扮演生产者的角色,生成消息并发送到 Kafka。然后,这些日志数据被发送到 Logstash 进行分析和过滤,Logstash 在这里扮演消费者的角色。处理后的数据被存储在 Elasticsearch 中,最后我们使用 Kibana 对日志数据进行可视化展示。

2.2、环境准备

本地

  • Kafka
  • ES
  • Kibana
  • filebeat
  • Java Demo 项目

我们使用 Docker 创建以一个 名为 es-net 的网络

在 Docker 中,网络是连接和隔离 Docker 容器的方式。当你创建一个网络,我们定义一个可以相互通信的容器的网络环境。

docker network create es-net

docker network create 是 Docker 命令行界面的一个命令,用于创建一个新的网络。在这个命令后面,你需要指定你想要创建的网络的名称,在这个例子中,网络的名称是 “es-net”。

所以,docker network create es-net 这句命令的意思就是创建一个名为 “es-net” 的 Docker 网络。

2.3、基于Docker的ES部署

加载镜像:

docker pull elasticsearch:7.12.1

运行容器:

docker run -d \--name es \-e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \-e "discovery.type=single-node" \--privileged \--network es-net \-p 9200:9200 \-p 9300:9300 \elasticsearch:7.12.1-v es-data:/Users/lizhengi/elasticsearch/data \-v es-plugins:/Users/lizhengi/elasticsearch/plugins \

这个命令是使用 Docker 运行一个名为 “es” 的 Elasticsearch 容器。具体参数的含义如下:

  • docker run -d:使用 Docker 运行一个新的容器,并且在后台模式(detached mode)下运行。

  • --name es:设置容器的名称为 “es”。

  • -e "ES_JAVA_OPTS=-Xms512m -Xmx512m":设置环境变量 ES_JAVA_OPTS,这是 JVM 的参数,用于控制 Elasticsearch 使用的最小和最大内存。这里设置的是最小和最大内存都为 512MB。

  • -e "discovery.type=single-node":设置环境变量 discovery.type,这是 Elasticsearch 的参数,用于设置集群发现类型。这里设置的是单节点模式。

  • -v es-data:/Users/lizhengi/elasticsearch/data-v es-plugins:/Users/lizhengi/elasticsearch/plugins:挂载卷(volume)。这两个参数将主机上的 es-dataes-plugins 目录挂载到容器的 /Users/lizhengi/elasticsearch/data/Users/lizhengi/elasticsearch/plugins 目录。

  • --privileged:以特权模式运行容器。这将允许容器访问宿主机的所有设备,并且容器中的进程可以获取任何 AppArmor 或 SELinux 的权限。

  • --network es-net:将容器连接到 es-net 网络。

  • -p 9200:9200-p 9300:9300:端口映射。这两个参数将容器的 9200 和 9300 端口映射到主机的 9200 和 9300 端口。

  • elasticsearch:7.12.1:要运行的 Docker 镜像的名称和标签。这里使用的是版本为 7.12.1 的 Elasticsearch 镜像。

运行结果验证:随后便可以去访问 IP:9200,结果如图:

image-20231021103821702

2.4、基于Docker的kibana部署

加载镜像:

docker pull kibana:7.12.1

运行容器:

docker run -d \--name kibana \-e ELASTICSEARCH_HOSTS=http://es:9200 \--network=es-net \-p 5601:5601  \
kibana:7.12.1

这是一个 Docker 命令,用于运行一个 Kibana 容器。下面是每个参数的解释:

  • docker run -d:使用 Docker 运行一个新的容器,并且在后台模式(detached mode)下运行。

  • --name kibana:设置容器的名称为 “kibana”。

  • -e ELASTICSEARCH_HOSTS=http://es:9200:设置环境变量 ELASTICSEARCH_HOSTS,这是 Kibana 的参数,用于指定 Elasticsearch 服务的地址。这里设置的是 http://es:9200,表示 Kibana 将连接到同一 Docker 网络中名为 “es” 的容器的 9200 端口。

  • --network=es-net:将容器连接到 es-net 网络。

  • -p 5601:5601:端口映射。这个参数将容器的 5601 端口映射到主机的 5601 端口。

  • kibana:7.12.1:要运行的 Docker 镜像的名称和标签。这里使用的是版本为 7.12.1 的 Kibana 镜像。

kibana启动一般比较慢,需要多等待一会,可以通过命令:

docker logs -f kibana

查看运行日志,当查看到下面的日志,说明成功:

image-20231021104654758

运行结果验证:随后便可以去访问 IP:9200,结果如图:

也可以浏览器访问:

image-20231021104755229

2.5、基于Docker的Zookeeper部署

加载镜像:

docker pull zookeeper:latest

运行容器:

以下是一个基本的 Docker 命令,用于运行一个 Zookeeper 容器:

docker run -d \--name zookeeper \--network=es-net \-p 2181:2181 \
zookeeper:latest

这个命令的参数解释如下:

  • docker run -d:使用 Docker 运行一个新的容器,并且在后台模式(detached mode)下运行。
  • --name zookeeper:设置容器的名称为 “zookeeper”。
  • --network=es-net:将容器连接到 es-net 网络。
  • -p 2181:2181:端口映射。这个参数将容器的 2181 端口映射到主机的 2181 端口。
  • zookeeper:latest:要运行的 Docker 镜像的名称和标签。这里使用的是最新版本的 Zookeeper 镜像。
2.6、基于Docker的Kafka部署

加载镜像:

docker pull confluentinc/cp-kafka:latest

运行容器:

以下是一个基本的 Docker 命令,用于运行一个 Kafka 容器:

docker run -d \--name kafka \--network=es-net \-p 9092:9092 \-e KAFKA_ZOOKEEPER_CONNECT=zookeeper:2181 \-e KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://kafka:9092 \
confluentinc/cp-kafka:latest

这个命令的参数解释如下:

  • docker run -d:使用 Docker 运行一个新的容器,并且在后台模式(detached mode)下运行。
  • --name kafka:设置容器的名称为 “kafka”。
  • --network=es-net:将容器连接到 es-net 网络。
  • -p 9092:9092:端口映射。这个参数将容器的 9092 端口映射到主机的 9092 端口。
  • -e KAFKA_ZOOKEEPER_CONNECT=zookeeper:2181:设置环境变量 KAFKA_ZOOKEEPER_CONNECT,这是 Kafka 的参数,用于指定 Zookeeper 服务的地址。这里设置的是 zookeeper:2181,表示 Kafka 将连接到同一 Docker 网络中名为 “zookeeper” 的容器的 2181 端口。
  • -e KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://localhost:9092:设置环境变量 KAFKA_ADVERTISED_LISTENERS,这是 Kafka 的参数,用于指定 Kafka 服务对外公布的地址和端口。这里设置的是 PLAINTEXT://localhost:9092
  • confluentinc/cp-kafka:latest:要运行的 Docker 镜像的名称和标签。这里使用的是最新版本的 Confluent 平台的 Kafka 镜像。
2.7、基于Docker的Logstash部署

加载镜像:

docker pull docker.elastic.co/logstash/logstash:7.12.1

创建配置文件:

首先,你需要创建一个 Logstash 配置文件,例如 logstash.conf,内容如下:

input {kafka {bootstrap_servers => "kafka:9092"topics => ["logs_topic"]}
}output {elasticsearch {hosts => ["es:9200"]index => "logs_index"}
}

这个配置文件定义了 Logstash 的输入和输出。输入是 Kafka,连接到 kafka:9092,订阅的主题是 your_topic。输出是 Elasticsearch,地址是 es:9200,索引名是 logs_index

运行容器:

然后,我们使用以下命令运行 Logstash 容器:

docker run -d \--name logstash \--network=es-net \-v /Users/lizhengi/test/logstash.conf:/usr/share/logstash/pipeline/logstash.conf \
docker.elastic.co/logstash/logstash:7.12.1

这个命令的参数解释如下:

  • docker run -d:使用 Docker 运行一个新的容器,并且在后台模式(detached mode)下运行。
  • --name logstash:设置容器的名称为 “logstash”。
  • --network=es-net:将容器连接到 es-net 网络。
  • -v /path/to/your/logstash.conf:/usr/share/logstash/pipeline/logstash.conf:挂载卷(volume)。这个参数将主机上的 logstash.conf 文件挂载到容器的 /usr/share/logstash/pipeline/logstash.conf
  • docker.elastic.co/logstash/logstash:latest:要运行的 Docker 镜像的名称和标签。这里使用的是最新版本的 Logstash 镜像。

请注意,你需要将 /path/to/your/logstash.conf 替换为你的 logstash.conf 文件所在的实际路径。

2.8、基于Docker的Filebeat部署

加载镜像:

docker pull docker.elastic.co/beats/filebeat:7.12.1

运行容器:

首先,你需要创建一个 Filebeat 配置文件,例如 filebeat.yml,内容如下:

filebeat.inputs:
- type: logenabled: truepaths:- /usr/share/filebeat/logs/*.logoutput.kafka:enabled: truehosts: ["kafka:9092"]topic: "logs_topic"

这个配置文件定义了 Filebeat 的输入和输出。输入是文件 /usr/share/filebeat/Javalog.log,输出是 Kafka,连接到 kafka:9092,主题是 logs_topic

然后,你可以使用以下命令运行 Filebeat 容器:

docker run -d \--name filebeat \--network=es-net \-v /Users/lizhengi/test/logs:/usr/share/filebeat/logs \-v /Users/lizhengi/test/filebeat.yml:/usr/share/filebeat/filebeat.yml \
docker.elastic.co/beats/filebeat:7.12.1

这个命令的参数解释如下:

  • docker run -d:使用 Docker 运行一个新的容器,并且在后台模式(detached mode)下运行。

  • --name filebeat:设置容器的名称为 “filebeat”。

  • --network=es-net:将容器连接到 es-net 网络。

  • -v /Users/lizhengi/test/Javalog.log:/usr/share/filebeat/Javalog.log:挂载卷(volume)。这个参数将主机上的 /Users/lizhengi/test/Javalog.log 文件挂载到容器的 /usr/share/filebeat/Javalog.log

  • -v /path/to/your/filebeat.yml:/usr/share/filebeat/filebeat.yml:挂载卷(volume)。这个参数将主机上的 filebeat.yml 文件挂载到容器的 /usr/share/filebeat/filebeat.yml

  • docker.elastic.co/beats/filebeat:latest:要运行的 Docker 镜像的名称和标签。这里使用的是最新版本的 Filebeat 镜像。

请注意,你需要将 /path/to/your/filebeat.yml 替换为你的 filebeat.yml 文件所在的实际路径。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/165520.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

stable diffusion和midjourney哪个好

midjourney和stable diffusion哪个好?midjourney和stable diffusion的区别?那么今天就从这2款软件入手,来探索一下他们的功能的各项区别吧,让你选择更适合你的一款ai软件。 截至目前,我们目睹了生成式人工智能工具的在…

复杂的菱形继承及菱形虚拟继承(详解)

复杂的菱形继承及菱形虚拟继承 复杂的菱形继承及菱形虚拟继承虚拟继承解决数据冗余和二义性的原理笔试面试题 复杂的菱形继承及菱形虚拟继承 单继承:一个子类只有一个直接父类时称这个继承关系为单继承 多继承:一个子类有两个或以上直接父类时称这个继…

Leetcode—2525.根据规则将箱子分类【简单】

2023每日刷题(五) Leetcode—2525.根据规则将箱子分类 实现代码 char * categorizeBox(int length, int width, int height, int mass){long long volume;long long len (long long)length;long long wid (long long)width;long long heig (long lo…

ssrf漏洞学习

目录 ssrf漏洞 相关函数 相关协议 file协议 dict协议 gopher协议 ctfshow ssrf web351 web352 web353 web354过滤01 web355五位长度 web356 三位长度 web357 DNS重定向 web358 正则 ssrf漏洞 SSRF(Server-Side Request Forgery,服务器端请…

搭建伪分布式Hadoop

文章目录 一、Hadoop部署模式(一)独立模式(二)伪分布式模式(三)完全分布式模式 二、搭建伪分布式Hadoop(一)登录虚拟机(二)上传安装包(三&#xf…

(矩阵) 289. 生命游戏 ——【Leetcode每日一题】

❓ 289. 生命游戏 难度:中等 根据 百度百科 , 生命游戏 ,简称为 生命 ,是英国数学家约翰何顿康威在 1970 年发明的细胞自动机。 给定一个包含 m n 个格子的面板,每一个格子都可以看成是一个细胞。每个细胞都具有一…

C++类对象所占内存空间大小分析

前言 类占内存空间是只类实例化后占用内存空间的大小,类本身是不会占内存空间的。用 sizeof 计算类的大小时,实际上是计算该类实例化后对象的大小。空类占用1字节原因:C要求每个实例在内存中都有一个唯一地址,为了达到这个目的&am…

MySQL的索引——索引的介绍及其数据结构B+树 索引的类型 索引的使用及其失效场景 相关名词解释

前言 索引是存储引擎用于快速查找数据纪录的一种数据结构,索引是数据库中经常提及的一个词,究竟什么是索引,索引的数据结构是什么,索引有什么类型? 本篇博客尝试阐述数据库索引的相关内容,涉及什么是索引…

【LeetCode】62. 不同路径

1 问题 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。 问总共有多少条不同的路径&#xff1f…

如何压缩ppt文件的大小?

如何压缩ppt文件的大小?要知道现在很多课件都是使用ppt文件,那么就导致ppt文件过大,我们很多时候电脑的存储空间就不够了。为了能够更好的存储这些ppt文件,我们通常会选择压缩ppt文件。怎么压缩ppt文件更快更好,没有损…

机器人制作开源方案 | 行星探测车实现WiFi视频遥控功能

1. 功能描述 本文示例所实现的功能为:用手机APP,通过WiFi通信遥控R261样机行星探测车移动,以及打开、关闭行星探测车太阳翼。 2. 电子硬件 在这个示例中,我们采用了以下硬件,请大家参考: 主控板 Basra主控…

1.1 网页的基本概念

思维导图: 网页设计基础知识 --- **导言:** 随着互联网的迅速蔓延,世界各地的数亿人群均可以通过网络实现聊天、购物、阅读新闻、查询天气等功能。而在幕后,是成千上万的网页支撑这一切。但这些网页是如何制作的?我们…

阿里低代码Low Code Engine快速上手

一、环境准备 在正式开始之前,我们需要先安装相应的软件:WSL、Node等。Window 环境需要使用 WSL 在 windows 下进行低代码引擎相关的开发。安装教程➡️ WSL 安装教程。对于 Window 环境来说,之后所有需要执行命令的操作都是在 WSL 终端执行的。 2.1 Node 推荐安装Node 1…

如何实现前端音频和视频播放?

聚沙成塔每天进步一点点 ⭐ 专栏简介 前端入门之旅:探索Web开发的奇妙世界 欢迎来到前端入门之旅!感兴趣的可以订阅本专栏哦!这个专栏是为那些对Web开发感兴趣、刚刚踏入前端领域的朋友们量身打造的。无论你是完全的新手还是有一些基础的开发…

2022年京东双11食品饮料品类数据回顾

2022年双11,根据京东官方发布的数据显示,京东百货中,京东新百货的589个品类10025个品牌成交额同比增长100%。而在食品饮料行业中,也有一些在大促期间成交额同比涨幅超过100%的品牌。 下面,结合鲸参谋平台提供的数据&am…

【c#】Quartz开源任务调度框架学习及练习Demo

Quartz开源任务调度框架学习及练习Demo 1、定义、作用 2、原理 3、使用步骤 4、使用场景 5、Demo代码参考示例 6、注意事项 7、一些Trigger属性说明 1、定义、作用 Quartz是一个开源的任务调度框架,作用是支持开发人员可以定时处理业务,比如定时…

npm publish发布到在线仓库时,提示:Scope not found

当npm publish发布时,控制台提示:Scope not found,具体错误信息如下: npm notice npm ERR! code E404 npm ERR! 404 Not Found - PUT https://registry.npmjs.org/xxx%2fxxx - Scope not found npm ERR! 404 npm ERR! 404 xxx/xx…

easyphoto 妙鸭相机

AIGC专栏7——EasyPhoto 人像训练与生成原理详解-CSDN博客如何训练一个高品质的人像Lora与应用高品质Lora的链路对于写真生成而言非常重要。由《LoRA: Low-Rank Adaptation of Large Language Models》 提出的一种基于低秩矩阵的对大参数模型进行少量参数微调训练的方法&#x…

【算法练习Day24】递增子序列全排列全排列 II

​📝个人主页:Sherry的成长之路 🏠学习社区:Sherry的成长之路(个人社区) 📖专栏链接:练题 🎯长路漫漫浩浩,万事皆有期待 文章目录 递增子序列容易出错的地方 …

安装Git和git命令使用

文章目录 安装Git创建版本库版本回退工作区和暂存区管理修改撤销修改 安装Git 在Windows上安装Git 在Windows上使用Git,可以从Git官网直接下载安装程序,然后按默认选项安装即可。 安装完成后,在开始菜单里找到“Git”->“Git Bash”&…