【大数据】Kafka 实战教程(一)

Kafka 实战教程(一)

  • 1.Kafka 介绍
    • 1.1. 主要功能
    • 1.2. 使用场景
    • 1.3 详细介绍
      • 1.3.1 消息传输流程
      • 1.3.2 Kafka 服务器消息存储策略
      • 1.3.3 与生产者的交互
      • 1.3.4 与消费者的交互
  • 2.Kafka 生产者
  • 3.Kafka 消费者
    • 3.1 Kafka 消费模式
      • 3.1.1 At-most-once(最多一次)
      • 3.1.2 At-least-once(最少一次)
      • 3.1.3 Exactly-once(正好一次)
    • 3.2 消费组与分区重平衡
  • 4.Broker
  • 5.Topic
    • 5.1 Topic 中 Partition 存储分布
    • 5.2 Partiton 中文件存储方式
    • 5.3 Partiton 中 Segment 文件存储结构
    • 5.4 在 Partition 中如何通过 Offset 查找 Message
    • 5.5 读写 Message 总结

应用往 Kafka 写数据的原因有很多:用户行为分析日志存储异步通信 等。多样化的使用场景带来了多样化的需求:消息是否能丢失?是否容忍重复?消息的吞吐量?消息的延迟?

1.Kafka 介绍

Kafka 属于 Apache 组织,是一个高性能跨语言分布式发布订阅消息队列系统。它的主要特点有:

  • 以时间复杂度 O ( 1 ) O(1) O(1) 的方式提供消息持久化能力,并对大数据量能保证常数时间的访问性能。
  • 高吞吐率,单台服务器可以达到每秒几十万的吞吐速率。
  • 支持服务器间的消息分区,支持分布式消费,同时保证了每个分区内的消息顺序。
  • 轻量级,支持实时数据处理和离线数据处理两种方式。

1.1. 主要功能

根据官网的介绍,Apache Kafka 是一个分布式流媒体平台,它主要有 3 种功能:

  • 发布和订阅消息流,这个功能类似于消息队列,这也是 Kafka 归类为消息队列框架的原因。
  • 以容错的方式记录消息流,Kafka 以文件的方式来存储消息流。
  • 可以在消息发布的时候进行处理。

1.2. 使用场景

  • 消息队列功能,在系统或应用程序之间构建可靠的用于传输实时数据的管道。
  • 数据处理功能,构建实时的流数据处理程序来变换或处理数据流。

1.3 详细介绍

Kafka 目前主要作为一个分布式的发布订阅式的消息系统使用,下面简单介绍一下 Kafka 的基本机制。

1.3.1 消息传输流程

在这里插入图片描述
Producer:生产者。生产者向 Kafka 集群发送消息,在发送消息之前,会对消息进行分类,即 Topic。上图展示了两个 producer 发送了分类为 topic1 的消息,另外一个发送了 topic2 的消息。

Topic:主题。通过对消息指定主题可以将消息分类,消费者可以只关注自己需要的 Topic 中的消息。

Consumer:消费者。消费者通过与 Kafka 集群建立长连接的方式,不断地从集群中拉取消息,然后可以对这些消息进行处理。

从上图中就可以看出同一个 Topic 下的消费者和生产者的数量并不是对应的。

1.3.2 Kafka 服务器消息存储策略

在这里插入图片描述
谈到 Kafka 的存储,就不得不提到分区,即 Partitions,创建一个 Topic 时,同时可以指定分区数目,分区数越多,其吞吐量也越大,但是需要的资源也越多,同时也会导致更高的不可用性,Kafka 在接收到生产者发送的消息之后,会根据均衡策略将消息存储到不同的分区中。
在这里插入图片描述
在每个分区中,消息以顺序存储,最晚接收的的消息会最后被消费。

Kafka 中的 Message 以 Topic 的形式存在,Topic 在物理上又分为很多的 Partition,Partition 物理上由很多 Segment 组成,Segment 是存放 Message 的真正载体。

下面具体介绍下 Segment 文件:

  • 每个 Partition(目录)相当于一个巨型文件被平均分配到多个大小相等 Segment(段)数据文件中。但每个段 Segment File 消息数量不一定相等,这种特性方便 Old Segment File 快速被删除。
  • 每个 Partiton 只需要支持顺序读写就行了,Segment 文件生命周期由服务端配置参数决定。
  • Segment File 组成:由 2 大部分组成,分别为 index filedata file,此 2 个文件一一对应,成对出现,后缀 .index.log 分别表示为 Segment 索引文件、数据文件。
  • Segment 文件命名规则:Partion 全局的第一个 Segment 从 0 0 0 开始,后续每个 Segment 文件名为上一个 Segment 文件最后一条消息的 Offset 值。数值最大为 64 64 64long 大小, 19 19 19 位数字字符长度,没有数字用 0 0 0 填充。

在这里插入图片描述
.index 文件存放的是 Message 逻辑相对偏移量( 相对 o f f s e t = 绝对 o f f s e t − b a s e o f f s e t 相对 offset = 绝对offset - base\ offset 相对offset=绝对offsetbase offset)以及在相应的 .log 文件中的物理位置(Position)。

.index 并不是为每条 Message 都指定到物理位置的映射,而是以 entry 为单位,每条 entry 可以指定连续 n n n 条消息的物理位置映射。

例如:假设有 20000 ~ 20009 共 10 条消息,.index 文件可配置为每条 entry 指定连续 10 10 10 条消息的物理位置映射,该例中,index entry 会记录偏移量为 20000 的消息到其物理文件位置,一旦该条消息被定位,20001 ~ 20009 可以很快查到。

每个 entry 大小 8 8 8 字节,前 4 4 4 个字节是这个 Message 相对于该 log segment 第一个消息 offsetbase offset)的相对偏移量,后 4 4 4 个字节是这个消息在 .log 文件中的物理位置。

1.3.3 与生产者的交互

在这里插入图片描述
生产者在向 Kafka 集群发送消息的时候,可以通过指定分区来发送到指定的分区中。也可以通过指定均衡策略来将消息发送到不同的分区中。如果不指定,就会采用默认的随机均衡策略,将消息随机的存储到不同的分区中。

1.3.4 与消费者的交互

在这里插入图片描述
在消费者消费消息时,Kafka 使用 Offset 来记录当前消费的位置。

在 Kafka 的设计中,可以有多个不同的 Group 来同时消费同一个 Topic 下的消息。如上图,我们有两个不同的 Group 同时消费,他们的消费的记录位置 Offset 各不项目,不互相干扰。

对于一个 Group 而言,消费者的数量不应该多于分区的数量,因为在一个 Group 中,每个分区至多只能绑定到一个消费者上,即一个消费者可以消费多个分区,一个分区只能给一个消费者消费。因此,若一个 Group 中的消费者数量大于分区数量的话,多余的消费者将不会收到任何消息。

2.Kafka 生产者

在这里插入图片描述
首先,创建 ProducerRecord 必须包含 Topic 和 Value,Key 和 Partition 可选。然后,序列化 Key 和 Value 对象为 ByteArray,并发送到网络。

接下来,消息发送到 Partitioner。如果创建 ProducerRecord 时指定了 Partition,此时 Partitioner 啥也不用做,简单的返回指定的 Partition 即可。如果未指定 Partition,Partitioner 会基于 ProducerRecord 的 Key 生成 Partition。Producer 选择好 Partition后,增加 record 到对应 Topic 和 Partition 的 Batch Record。最后,专有线程负责发送 Batch Record 到合适的 Kafka Broker。

当 Broker 收到消息时,它会返回一个应答(response)。如果消息成功写入 Kafka,Broker 将返回 RecordMetadata 对象(包含 Topic,Partition 和 Offset);相反,Broker 将返回 error。这时 Producer 收到 error 会尝试重试发送消息几次,直到 Producer 返回 error

实例化 Producer 后,接着发送消息。这里主要有 3 种发送消息的方法:

  • 立即发送:只管发送消息到 Server 端,不关心消息是否成功发送。大部分情况下,这种发送方式会成功,因为 Kafka 自身具有高可用性,Producer 会自动重试,但有时也会丢失消息。
  • 同步发送:通过 send() 方法发送消息,并返回 Future 对象。get() 方法会等待 Future 对象,看 send() 方法是否成功。
  • 异步发送:通过带有回调函数的 send() 方法发送消息,当 Producer 收到 Kafka Broker 的 response 会触发回调函数。

以上所有情况,一定要时刻考虑发送消息可能会失败,想清楚如何去处理异常。

通常我们是一个 Producer 起一个线程开始发送消息。为了优化 Producer 的性能,一般会有下面几种方式:单个 Producer 起多个线程发送消息;使用多个 Producer。

3.Kafka 消费者

3.1 Kafka 消费模式

Kafka 的消费模式总共有 3 种:最多一次,最少一次,正好一次。为什么会有这 3 种模式,是因为客户端 处理消息提交反馈commit)这两个动作不是原子性。

  • 最多一次:客户端收到消息后,在处理消息前自动提交,这样 Kafka 就认为 Consumer 已经消费过了,偏移量增加。
  • 最少一次:客户端收到消息,处理消息,再提交反馈。这样就可能出现消息处理完了,在提交反馈前,网络中断或者程序挂了,那么 Kafka 认为这个消息还没有被 Consumer 消费,产生重复消息推送。
  • 正好一次:保证消息处理和提交反馈在同一个事务中,即有原子性。

本文从这几个点出发,详细阐述了如何实现以上三种方式。

3.1.1 At-most-once(最多一次)

(1)设置 enable.auto.committure

(2)设置 auto.commit.interval.ms 为一个较小的时间间隔。

(3)Client 不要调用 commitSync(),Kafka 在特定的时间间隔内自动提交。

3.1.2 At-least-once(最少一次)

方法一

(1)设置 enable.auto.commitfalse

(2)Client 调用 commitSync(),增加消息偏移。

方法二

(1)设置 enable.auto.committure

(2)设置 auto.commit.interval.ms 为一个较大的时间间隔。

(3)Client 调用 commitSync(),增加消息偏移。

3.1.3 Exactly-once(正好一次)

如果要实现这种方式,必须自己控制消息的 offset,自己记录一下当前的 offset,对消息的处理和 offset 的移动必须保持在同一个事务中,例如在同一个事务中,把消息处理的结果存到 MySQL 数据库,同时更新此时的消息的偏移。

(1)设置 enable.auto.commitfalse

(2)保存 ConsumerRecord 中的 Coffset 到数据库。

(3)当 Partition 分区发生变化的时候需要再均衡(Rebalance),有以下几个事件会触发分区变化:

  • Consumer 订阅的 Topic 中的分区大小发生变化。
  • Topic 被创建或者被删除。
  • Consuer 所在 Group 中有个成员挂了。
  • 新的 Consumer 通过调用 join 加入了 Group。

(4)此时 Consumer 通过实现 ConsumerRebalanceListener 接口,捕捉这些事件,对偏移量进行处理。

(5)Consumer 通过调用 seek(TopicPartition, long) 方法,移动到指定的分区的偏移位置。

3.2 消费组与分区重平衡

当新的消费者加入消费组,它会消费一个或多个分区,而这些分区之前是由其他消费者负责的;另外,当消费者离开消费组(比如重启、宕机等)时,它所消费的分区会分配给其他分区。这种现象称为 重平衡(Rebalance)。重平衡是 Kafka 一个很重要的性质,这个性质保证了高可用和水平扩展。不过也需要注意到,在重平衡期间,所有消费者都不能消费消息,因此会造成整个消费组短暂的不可用。而且,将分区进行重平衡也会导致原来的消费者状态过期,从而导致消费者需要重新更新状态,这段期间也会降低消费性能。后面我们会讨论如何安全的进行重平衡以及如何尽可能避免。

消费者通过定期发送心跳(hearbeat)到一个作为组协调者(group coordinator)的 Broker 来保持在消费组内存活。这个 Broker 不是固定的,每个消费组都可能不同。当消费者拉取消息或者提交时,便会发送心跳。

如果消费者超过一定时间没有发送心跳,那么它的会话(session)就会过期,组协调者会认为该消费者已经宕机,然后触发重平衡。可以看到,从消费者宕机到会话过期是有一定时间的,这段时间内该消费者的分区都不能进行消息消费;通常情况下,我们可以进行优雅关闭,这样消费者会发送离开的消息到组协调者,这样组协调者可以立即进行重平衡而不需要等待会话过期。

0.10.1 0.10.1 0.10.1 版本,Kafka 对心跳机制进行了修改,将发送心跳与拉取消息进行分离,这样使得发送心跳的频率不受拉取的频率影响。另外更高版本的 Kafka 支持配置一个消费者多长时间不拉取消息但仍然保持存活,这个配置可以避免活锁(livelock)。活锁,是指应用没有故障但是由于某些原因不能进一步消费。

4.Broker

Kafka 是一个高吞吐量分布式消息系统,采用 Scala 和 Java 语言编写,它提供了快速、可扩展的、分布式、分区的和可复制的日志订阅服务。它由 Producer、Broker、Consumer 三部分构成.

Producer 向某个 Topic 发布消息,而 Consumer 订阅某个 Topic 的消息。 一旦有某个 Topic 新产生的消息,Broker 会传递给订阅它的所有 Consumer,每个 Topic 分为多个分区,这样的设计有利于管理数据和负载均衡。

  • Broker:消息中间件处理结点,一个 Kafka 节点就是一个 Broker,多个 Broker 可以组成一个 Kafka 集群。
  • Controller:中央控制器 Control,负责管理分区和副本状态并执行管理着这些分区的重新分配(里面涉及到 Partition Leader 选举)。
  • ISR(In-Sync Replicas同步副本组):Kafka 为某个分区维护的一组同步集合,即每个分区都有自己的一个 ISR 集合,处于 ISR 集合中的副本,意味着 Follower 副本与 Leader 副本保持同步状态,只有处于 ISR 集合中的副本才有资格被选举为 Leader。一条 Kafka 消息,只有被 ISR 中的副本都接收到,才被视为 “已同步” 状态。这跟 ZK 的同步机制不一样,ZK 只需要超过半数节点写入,就可被视为已写入成功。

5.Topic

在 Kafka 中,消息是按 Topic 组织的。

  • Partition:Topic 物理上的分组,一个 Topic 可以分为多个 Partition,每个 Partition 是一个有序的队列。
  • Segment:Partition 物理上由多个 Segment 组成
  • Offset:每个 Partition 都由一系列有序的、不可变的消息组成,这些消息被连续的追加到 Partition 中。Partition 中的每个消息都有一个连续的序列号叫做 Offset,用于 Partition 唯一标识一条消息。

5.1 Topic 中 Partition 存储分布

在 Kafka 文件存储中,同一个 Topic 下有多个不同 Partition,每个 Partition 为一个目录,Partiton 命名规则为 Topic 名称 + 有序序号,第一个 Partiton 序号从 0 0 0 开始,序号最大值为 Partitions 数量减 1 1 1

├── data0
│   ├── cleaner-offset-checkpoint
│   ├── client_mblogduration-35
│   │   ├── 00000000000004909731.index
│   │   ├── 00000000000004909731.log           // 1G 文件--Segment
│   │   ├── 00000000000005048975.index         // 数字是 Offset
│   │   ├── 00000000000005048975.log
│   ├── client_mblogduration-37
│   │   ├── 00000000000004955629.index
│   │   ├── 00000000000004955629.log
│   │   ├── 00000000000005098290.index
│   │   ├── 00000000000005098290.log
│   ├── __consumer_offsets-33
│   │   ├── 00000000000000105157.index
│   │   └── 00000000000000105157.log
│   ├── meta.properties
│   ├── recovery-point-offset-checkpoint
│   └── replication-offset-checkpoint
  • cleaner-offset-checkpoint:存了每个日志最后清理的 Offset。记录当前清理到哪里了,这时候 Kafka 就知道哪部分是已经清理的,哪部分是未清理的。
  • meta.propertiesbroker.id 信息。
  • recovery-point-offset-checkpoint:表示已经刷写到磁盘的记录。日志恢复点(recoveryPoint)以下的数据都是已经刷到磁盘上的了。
  • replication-offset-checkpoint:用来存储每个 Replica 的 High Watermark(HW)。High Watermark 表示已经被 commited 的 Message,HW 以下的数据都是各个 Replicas 间同步的,一致的。

在这里插入图片描述

5.2 Partiton 中文件存储方式

每个 Partion(目录)由多个大小相等 Segment(段)数据文件组成。但每个段 Segment File 消息数量不一定相等,这种特性方便 Old Segment File 快速被删除。

每个 Partiton 只需要支持顺序读写就行了,Segment 文件生命周期由服务端配置参数决定。

5.3 Partiton 中 Segment 文件存储结构

Segment File 组成:由 2 大部分组成,分别为 index filedata file,此 2 个文件一一对应,成对出现,后缀 .index.log 分别表示为 Segment 的索引文件、数据文件。

Segment 文件命名规则:Partion 全局的第一个 Segment 从 0 0 0 开始,后续每个 Segment 文件名为上一个 Segment 文件最后一条消息的 Offset 值。数值最大为 64 64 64long 大小, 19 19 19 位数字字符长度,没有数字用 0 0 0 填充。

以一对 Segment File 文件为例,说明 Segment 中 index filedata file 对应关系物理结构如下:

  • index 文件存储大量元数据,指向对应 log 文件中 message 的物理偏移地址。
  • log 数据文件存储大量消息。

其中以 index 文件中元数据 3 , 497 3,497 3,497 为例,依次在数据文件中表示第 3 3 3message(在全局 Partiton 表示第 368772 368772 368772message)、以及该消息的物理偏移地址为 497 497 497

segment data file 由许多 message 组成,下面详细说明 message 物理结构如下:

关键字解释说明
8 byte offset该 message 在 partition 的 offset
4 byte message sizemessage 大小
4 byte CRC32用 crc32 校验 message
1 byte “magic”表示本次发布 Kafka 服务程序协议版本号
1 byte “attributes”表示为独立版本、或标识压缩类型、或编码类型
4 byte key length表示 key 的长度,当 key 为 − 1 -1 1 时,K byte key 字段不填
K byte key可选
value bytes payload表示实际消息数据

5.4 在 Partition 中如何通过 Offset 查找 Message

例如读取 offset = 368776 的 Message,需要通过下面 2 个步骤查找。

(1)第一步查找 segment file

00000000000000000000.index 表示最开始的文件,起始偏移量(offset)为 0 0 0。第二个文件00000000000000368769.index 的消息量起始偏移量为 368770 = 368769 + 1。同样,第三个文件 00000000000000737337.index 的起始偏移量为 737338=737337 + 1,其他后续文件依次类推,以起始偏移量命名并排序这些文件,只要根据 offset 二分查找文件列表,就可以快速定位到具体文件。

offset=368776 时定位到 00000000000000368769.index|log

(2)第二步通过 segment file 查找 message

通过第一步定位到 segment file,当 offset=368776 时,依次定位到 00000000000000368769.index 的元数据物理位置(这个较小,可以放在内存中,直接操作)和 00000000000000368769.log 的物理偏移地址,然后再通过 00000000000000368769.log 顺序查找直到 offset=368776 为止。

segment index file 采取稀疏索引存储方式,它减少索引文件大小,通过 Map 可以直接内存操作,稀疏索引为数据文件的每个对应 Message 设置一个元数据指针,它比稠密索引节省了更多的存储空间,但查找起来需要消耗更多的时间。

5.5 读写 Message 总结

  • message
    • 消息从 Java 堆转入 page cache(即物理内存)。
    • 由异步线程刷盘,消息从 page cache 刷入磁盘。
  • message
    • 消息直接从 page cache 转入 socket 发送出去。
    • 当从 page cache 没有找到相应数据时,此时会产生磁盘 IO,从磁盘 Load 消息到 page cache,然后直接从 socket 发出去。

Kafka 高效文件存储设计特点

  • Topic 中一个 Parition 大文件分成多个小文件段,通过多个小文件段,就容易定期清除或删除已经消费完文件,减少磁盘占用。
  • 通过索引信息可以快速定位 message 和确定 response 的最大大小。
  • 通过 index 元数据全部映射到 memory,可以避免 segment file 的 IO 磁盘操作。
  • 通过索引文件稀疏存储,可以大幅降低 index 文件元数据占用空间大小。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/167256.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

FPGA设计FIR滤波器低通滤波器,代码及视频

名称:FIR滤波器低通滤波器 软件:Quartus 语言:Verilog/VHDL 本资源含有verilog及VHDL两种语言设计的工程,每个工程均可实现以下FIR滤波器的功能。 代码功能: 设计一个8阶FIR滤波器(低通滤波器&#xff…

【试题040】多个逻辑或例题2

1.题目:设int n0;,执行表达式n ||(n-1) ||(n0)||(n1)||(n2)后n的值是 ? 2.代码解析: 逻辑或 || 运算符是一个短路运算符,它从左到右依次计算表达式,如果遇到一个为真(非零)的值&am…

SequenceFile、元数据操作与MapReduce单词计数

文章目录 SequenceFile、元数据操作与MapReduce单词计数一、实验目标二、实验要求三、实验内容四、实验步骤附:系列文章 SequenceFile、元数据操作与MapReduce单词计数 一、实验目标 熟练掌握hadoop操作指令及HDFS命令行接口掌握HDFS SequenceFile读写操作掌握Map…

2021年03月 Python(三级)真题解析#中国电子学会#全国青少年软件编程等级考试

Python编程(1~6级)全部真题・点这里 一、单选题(共25题,每题2分,共50分) 第1题 下列代码的输出结果是?( ) x 0x10print(x)A:2 B:8 C&#xff…

数据结构:二叉树(2)

二叉树的基本操作 获取树的结点总数 遍历思路: 每次遍历一个节点,遍历完nodeSize,然后遍历它的左右子树 如果遍历到空的节点,就返回0 public int nodeSize 0;int size(TreeNode root){if(root null){return 0;}nodeSize;siz…

LeetCode讲解篇之77. 组合

文章目录 题目描述题解思路题解代码 题目描述 题解思路 遍历nums,让当前数字添加到结果前缀中,递归调用,直到前缀的长度为k,然后将前缀添加到结果集 题解代码 func combine(n int, k int) [][]int {var nums make([]int, n)fo…

【MATLAB源码-第51期】基于matlab的粒子群算法(PSO)的栅格地图路径规划。

操作环境: MATLAB 2022a 1、算法描述 粒子群算法(Particle Swarm Optimization,简称PSO)是一种模拟鸟群觅食行为的启发式优化方法。以下是其详细描述: 基本思想: 鸟群在寻找食物时,每只鸟都会…

arrow(c++)改写empyrical系列1---用arrow读取基金净值数据并计算夏普率

用arrow c版本读取了csv中的基金净值数据,然后计算了夏普率,比较尴尬的是,arrow c版本计算耗费的时间却比python的empyrical版本耗费时间多。。。 arrow新手上路,第一次自己去实现功能,实现的大概率并不是最高效的方…

windows上下载github上的linux内核项目遇到的问题

问题一:clone的时候报错 Cloning into G:\github\linux... POST git-upload-pack (gzip 27925 to 14032 bytes) remote: Counting objects: 6012062, done. remote: Compressing objects: 100% (1031/1031), done. remote: Total 6012062 (delta 893), reused 342 (…

【Axure高保真原型】可视化图表图标

今天和粉丝们免费分享可视化图表图标原型模板,包括柱状图、条形图、环形图、散点图、水波图等常用的可视化图表图标。 【原型效果】 【原型预览】 https://axhub.im/ax9/d402c647c82f9185/#c1 【原型下载】 这个模板可以在 Axure高保真原型哦 小程序里免费下载哦…

0基础学习VR全景平台篇第110篇:源图像导入和镜头预设 - PTGui Pro教程

上课!全体起立~ 大家好,欢迎观看蛙色官方系列全景摄影课程! 本节教程,我们讲述拼接软件 PTGui Pro 操作的第一步:导入源图像和预设镜头&画幅参数。 我们此次课堂有两个重点: 第一点是 培养摄影后期…

HTTPS、SSL/TLS,HTTPS运行过程,RSA加密算法,AES加密算法

1、为什么网站要使用安全证书 我们所处的网络环境是复杂多样的,大致分为两类,一类是可信的网络服务商,比如直接连的电信运营商的网络,网线,4G,5G;另一类是不可信的网络,比如WIFI&am…

会声会影2024有哪些新功能?好不好用

比如会声会影视频编辑软件,既加入光影、动态特效的滤镜效果,也提供了与色彩调整相关的LUT配置文件滤镜,可选择性大,运用起来更显灵活。会声会影在用户的陪伴下走过20余载,经过上百个版本的优化迭代,已将操作…

ubuntu20.04 nvidia显卡驱动掉了,变成开源驱动,在软件与更新里选择专有驱动,下载出错,调整ubuntu镜像源之后成功修复

驱动配置好,环境隔了一段时间,打开Ubuntu发现装好的驱动又掉了,软件与更新 那里,附加驱动,显示开源驱动,命令行输入 nvidia-smi 命令查找不到驱动。 点击上面的 nvidia-driver-470(专有&#x…

Maven 生命周期clean default size含义

clean 负责清理工作,清理上一次项目构建产生的一些文件,如编译后的字节码文件,打包后的jar包文件 default 整一个项目构建的核心工作,如编译,测试,打包,安装,部署等等 size 生成报告…

【Mysql】B+树索引的使用(七)

前言 每个索引都对应一棵 B 树, B 树分为多层,最下边一层是叶子节点,其余的是内节点(非叶子节点)。所有用户记录都存储在 B 树的叶子节点,所有目录项记录都存储在内节点。 InnoDB 存储引擎会自动为主键&am…

实现Linux下Word转PDF、Java调用命令方式

使用 LibreOffice 实现 Word 转 PDF 和 Java 调用命令 1、 安装 LibreOffice 外网安装 # 一键安装 yum install -y libreoffice # 验证版本 libreoffice --version # Warning: -version is deprecated. Use --version instead. # LibreOffice 7.5.6.2 f654817fb68d6d4600d7…

数据仓库扫盲系列(1):数据仓库诞生原因、基本特点、和数据库的区别

数据仓库的诞生原因 随着互联网的普及,信息技术已经深入到各行各业,并逐步融入到企业的日常运营中。然而,当前企业在信息化建设过程中遇到了一些困境与挑战。 1、历史数据积存。 过去企业的业务系统往往是在较长时间内建设的,很…

MODBUS-TCP转MODBUS-RTU通信应用(S7-1200和串口服务器通信)

在学习本博客之前,大家需要熟悉MODBUS-TCP和MODBUS-RTU通信,这2个通信的编程应用,大家可以查看下面文章链接: MODBUS-RTU通信 MODBUS-RTU通信协议功能码+数据帧解读(博途PLC梯形图代码)-CSDN博客MODBUS通信详细代码编写,请查看下面相关链接,这篇博客主要和大家介绍MODB…

Rust逆向学习 (1)

文章目录 Hello, Rust Reverse0x01. main函数定位0x02. main函数分析line 1line 2line 3line 4~9 0x03. IDA反汇编0x04. 总结 近年来,Rust语言的热度越来越高,很多人都对Rust优雅的代码和优秀的安全性赞不绝口。对于开发是如此,对于CTF也是如…