订单30分钟自动关闭的五种解决方案

1 前言

在开发中,往往会遇到一些关于延时任务的需求。例如

  • 生成订单30分钟未支付,则自动取消
  • 生成订单60秒后,给用户发短信

对上述的任务,我们给一个专业的名字来形容,那就是延时任务 。那么这里就会产生一个问题,这个延时任务 和定时任务 的区别究竟在哪里呢?一共有如下几点区别

  1. 定时任务有明确的触发时间,延时任务没有
  2. 定时任务有执行周期,而延时任务在某事件触发后一段时间内执行,没有执行周期
  3. 定时任务一般执行的是批处理操作是多个任务,而延时任务一般是单个任务

下面,我们以判断订单是否超时为例,进行方案分析

2 方案一:数据库轮询

2.1 思路

该方案通常是在小型项目中使用,即通过一个线程定时的去扫描数据库,通过订单时间来判断是否有超时的订单,然后进行update或delete等操作

2.2 实现

博主当年早期是用quartz来实现的,简单介绍一下 maven项目引入一个依赖如下所示

<dependency><groupId>org.quartz-scheduler</groupId><artifactId>quartz</artifactId><version>2.2.2</version>
</dependency>

调用Demo类MyJob如下所示

package com.rjzheng.delay1;import org.quartz.JobBuilder;
import org.quartz.JobDetail;
import org.quartz.Scheduler;
import org.quartz.SchedulerException;
import org.quartz.SchedulerFactory;
import org.quartz.SimpleScheduleBuilder;
import org.quartz.Trigger;
import org.quartz.TriggerBuilder;
import org.quartz.impl.StdSchedulerFactory;
import org.quartz.Job;
import org.quartz.JobExecutionContext;
import org.quartz.JobExecutionException;public class MyJob implements Job {public void execute(JobExecutionContext context)throws JobExecutionException {System.out.println("要去数据库扫描啦。。。");}public static void main(String[] args) throws Exception {// 创建任务JobDetail jobDetail = JobBuilder.newJob(MyJob.class).withIdentity("job1", "group1").build();// 创建触发器 每3秒钟执行一次Trigger trigger = TriggerBuilder.newTrigger().withIdentity("trigger1", "group3").withSchedule(SimpleScheduleBuilder.simpleSchedule().withIntervalInSeconds(3).repeatForever()).build();Scheduler scheduler = new StdSchedulerFactory().getScheduler();// 将任务及其触发器放入调度器scheduler.scheduleJob(jobDetail, trigger);// 调度器开始调度任务scheduler.start();}
}

运行代码,可发现每隔3秒,输出如下

要去数据库扫描啦。。。

2.3 优缺点

优点:

  • 简单易行,支持集群操作

缺点:

  1. 对服务器内存消耗大
  2. 存在延迟,比如你每隔3分钟扫描一次,那最坏的延迟时间就是3分钟
  3. 假设你的订单有几千万条,每隔几分钟这样扫描一次,数据库损耗极大

3 方案二:JDK的延迟队列

3.1 思路

该方案是利用JDK自带的DelayQueue来实现,这是一个无界阻塞队列,该队列只有在延迟期满的时候才能从中获取元素,放入DelayQueue中的对象,是必须实现Delayed接口的。

DelayedQueue实现工作流程如下图所示

在这里插入图片描述
其中

  • poll():获取并移除队列的超时元素,没有则返回空
  • take():获取并移除队列的超时元素,如果没有则wait当前线程,直到有元素满足超时条件,返回结果。

3.2 实现

定义一个类OrderDelay实现Delayed,代码如下

package com.rjzheng.delay2;import java.util.concurrent.Delayed;
import java.util.concurrent.TimeUnit;public class OrderDelay implements Delayed {private String orderId;private long timeout;OrderDelay(String orderId, long timeout) {this.orderId = orderId;this.timeout = timeout + System.nanoTime();}public int compareTo(Delayed other) {if (other == this)return 0;OrderDelay t = (OrderDelay) other;long d = (getDelay(TimeUnit.NANOSECONDS) - t.getDelay(TimeUnit.NANOSECONDS));return (d == 0) ? 0 : ((d < 0) ? -1 : 1);}// 返回距离你自定义的超时时间还有多少public long getDelay(TimeUnit unit) {return unit.convert(timeout - System.nanoTime(), TimeUnit.NANOSECONDS);}void print() {System.out.println(orderId+"编号的订单要删除啦。。。。");}
}

运行的测试Demo为,我们设定延迟时间为3秒

package com.rjzheng.delay2;import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.DelayQueue;
import java.util.concurrent.TimeUnit;public class DelayQueueDemo {public static void main(String[] args) {// TODO Auto-generated method stubList<String> list = new ArrayList<String>();list.add("00000001");list.add("00000002");list.add("00000003");list.add("00000004");list.add("00000005");DelayQueue<OrderDelay> queue = new DelayQueue<OrderDelay>();long start = System.currentTimeMillis();for(int i = 0;i<5;i++){//延迟三秒取出queue.put(new OrderDelay(list.get(i),TimeUnit.NANOSECONDS.convert(3, TimeUnit.SECONDS)));try {queue.take().print();System.out.println("After " +(System.currentTimeMillis()-start) + " MilliSeconds");} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();}}}}

输出如下

00000001编号的订单要删除啦。。。。
After 3003 MilliSeconds
00000002编号的订单要删除啦。。。。
After 6006 MilliSeconds
00000003编号的订单要删除啦。。。。
After 9006 MilliSeconds
00000004编号的订单要删除啦。。。。
After 12008 MilliSeconds
00000005编号的订单要删除啦。。。。
After 15009 MilliSeconds

可以看到都是延迟3秒,订单被删除

3.3 优缺点

优点:

  • 效率高,任务触发时间延迟低。

缺点:

  1. 服务器重启后,数据全部消失,怕宕机
  2. 集群扩展相当麻烦
  3. 因为内存条件限制的原因,比如下单未付款的订单数太多,那么很容易就出现OOM异常
  4. 代码复杂度较高

4 方案三:时间轮算法

4.1 思路

先上一张时间轮的图(这图到处都是啦)
在这里插入图片描述
时间轮算法可以类比于时钟,如上图箭头(指针)按某一个方向按固定频率轮动,每一次跳动称为一个 tick。这样可以看出定时轮由个3个重要的属性参数,ticksPerWheel(一轮的tick数),tickDuration(一个tick的持续时间)以及 timeUnit(时间单位),例如当ticksPerWheel=60,tickDuration=1,timeUnit=秒,这就和现实中的始终的秒针走动完全类似了。

如果当前指针指在1上面,我有一个任务需要4秒以后执行,那么这个执行的线程回调或者消息将会被放在5上。那如果需要在20秒之后执行怎么办,由于这个环形结构槽数只到8,如果要20秒,指针需要多转2圈。位置是在2圈之后的5上面(20 % 8 + 1)

4.2 实现

我们用Netty的HashedWheelTimer来实现 给Pom加上下面的依赖

<dependency><groupId>io.netty</groupId><artifactId>netty-all</artifactId><version>4.1.24.Final</version>
</dependency>

测试代码HashedWheelTimerTest如下所示

package com.rjzheng.delay3;import io.netty.util.HashedWheelTimer;
import io.netty.util.Timeout;
import io.netty.util.Timer;
import io.netty.util.TimerTask;import java.util.concurrent.TimeUnit;public class HashedWheelTimerTest {static class MyTimerTask implements TimerTask{boolean flag;public MyTimerTask(boolean flag){this.flag = flag;}public void run(Timeout timeout) throws Exception {// TODO Auto-generated method stubSystem.out.println("要去数据库删除订单了。。。。");this.flag =false;}}public static void main(String[] argv) {MyTimerTask timerTask = new MyTimerTask(true);Timer timer = new HashedWheelTimer();timer.newTimeout(timerTask, 5, TimeUnit.SECONDS);int i = 1;while(timerTask.flag){try {Thread.sleep(1000);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();}System.out.println(i+"秒过去了");i++;}}
}

输出如下

1秒过去了
2秒过去了
3秒过去了
4秒过去了
5秒过去了
要去数据库删除订单了。。。。
6秒过去了

4.3 优缺点

优点:

  • 效率高,任务触发时间延迟时间比delayQueue低,代码复杂度比delayQueue低。

缺点:

  1. 服务器重启后,数据全部消失,怕宕机
  2. 集群扩展相当麻烦
  3. 因为内存条件限制的原因,比如下单未付款的订单数太多,那么很容易就出现OOM异常

5 方案四:redis缓存

5.1 实现一

利用redis的zset,zset是一个有序集合,每一个元素(member)都关联了一个score,通过score排序来取集合中的值

zset常用命令

  • 添加元素:ZADD key score member [[score member] [score member] …]

  • 按顺序查询元素:ZRANGE key start stop [WITHSCORES]

  • 查询元素score:ZSCORE key member

  • 移除元素:ZREM key member [member …]

测试如下

> 基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能
>
> * 项目地址:<https://github.com/YunaiV/yudao-cloud>
> * 视频教程:<https://doc.iocoder.cn/video/># 添加单个元素redis> ZADD page_rank 10 google.com
(integer) 1# 添加多个元素redis> ZADD page_rank 9 baidu.com 8 bing.com
(integer) 2redis> ZRANGE page_rank 0 -1 WITHSCORES
1) "bing.com"
2) "8"
3) "baidu.com"
4) "9"
5) "google.com"
6) "10"# 查询元素的score值
redis> ZSCORE page_rank bing.com
"8"# 移除单个元素redis> ZREM page_rank google.com
(integer) 1redis> ZRANGE page_rank 0 -1 WITHSCORES
1) "bing.com"
2) "8"
3) "baidu.com"
4) "9"

那么如何实现呢?我们将订单超时时间戳与订单号分别设置为score和member,系统扫描第一个元素判断是否超时,具体如下图所示
在这里插入图片描述

5.2 实现一

package com.rjzheng.delay4;import java.util.Calendar;
import java.util.Set;import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.Tuple;public class AppTest {private static final String ADDR = "127.0.0.1";private static final int PORT = 6379;private static JedisPool jedisPool = new JedisPool(ADDR, PORT);public static Jedis getJedis() {return jedisPool.getResource();}//生产者,生成5个订单放进去public void productionDelayMessage(){for(int i=0;i<5;i++){//延迟3秒Calendar cal1 = Calendar.getInstance();cal1.add(Calendar.SECOND, 3);int second3later = (int) (cal1.getTimeInMillis() / 1000);AppTest.getJedis().zadd("OrderId", second3later,"OID0000001"+i);System.out.println(System.currentTimeMillis()+"ms:redis生成了一个订单任务:订单ID为"+"OID0000001"+i);}}//消费者,取订单public void consumerDelayMessage(){Jedis jedis = AppTest.getJedis();while(true){Set<Tuple> items = jedis.zrangeWithScores("OrderId", 0, 1);if(items == null || items.isEmpty()){System.out.println("当前没有等待的任务");try {Thread.sleep(500);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();}continue;}int  score = (int) ((Tuple)items.toArray()[0]).getScore();Calendar cal = Calendar.getInstance();int nowSecond = (int) (cal.getTimeInMillis() / 1000);if(nowSecond >= score){String orderId = ((Tuple)items.toArray()[0]).getElement();jedis.zrem("OrderId", orderId);System.out.println(System.currentTimeMillis() +"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);}}}public static void main(String[] args) {AppTest appTest =new AppTest();appTest.productionDelayMessage();appTest.consumerDelayMessage();}}

此时对应输出如下

1525086085261ms:redis生成了一个订单任务:订单ID为OID00000010
1525086085263ms:redis生成了一个订单任务:订单ID为OID00000011
1525086085266ms:redis生成了一个订单任务:订单ID为OID00000012
1525086085268ms:redis生成了一个订单任务:订单ID为OID00000013
1525086085270ms:redis生成了一个订单任务:订单ID为OID00000014
1525086088000ms:redis消费了一个任务:消费的订单OrderId为OID00000010
1525086088001ms:redis消费了一个任务:消费的订单OrderId为OID00000011
1525086088002ms:redis消费了一个任务:消费的订单OrderId为OID00000012
1525086088003ms:redis消费了一个任务:消费的订单OrderId为OID00000013
1525086088004ms:redis消费了一个任务:消费的订单OrderId为OID00000014
当前没有等待的任务
当前没有等待的任务
当前没有等待的任务

可以看到,几乎都是3秒之后,消费订单。

然而,这一版存在一个致命的硬伤,在高并发条件下,多消费者会取到同一个订单号,我们上测试代码ThreadTest

package com.rjzheng.delay4;import java.util.concurrent.CountDownLatch;public class ThreadTest {private static final int threadNum = 10;private static CountDownLatch cdl = new CountDownLatch(threadNum);static class DelayMessage implements Runnable{public void run() {try {cdl.await();} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();}AppTest appTest =new AppTest();appTest.consumerDelayMessage();}}public static void main(String[] args) {AppTest appTest =new AppTest();appTest.productionDelayMessage();for(int i=0;i<threadNum;i++){new Thread(new DelayMessage()).start();cdl.countDown();}}
}

输出如下所示

1525087157727ms:redis生成了一个订单任务:订单ID为OID00000010
1525087157734ms:redis生成了一个订单任务:订单ID为OID00000011
1525087157738ms:redis生成了一个订单任务:订单ID为OID00000012
1525087157747ms:redis生成了一个订单任务:订单ID为OID00000013
1525087157753ms:redis生成了一个订单任务:订单ID为OID00000014
1525087160009ms:redis消费了一个任务:消费的订单OrderId为OID00000010
1525087160011ms:redis消费了一个任务:消费的订单OrderId为OID00000010
1525087160012ms:redis消费了一个任务:消费的订单OrderId为OID00000010
1525087160022ms:redis消费了一个任务:消费的订单OrderId为OID00000011
1525087160023ms:redis消费了一个任务:消费的订单OrderId为OID00000011
1525087160029ms:redis消费了一个任务:消费的订单OrderId为OID00000011
1525087160038ms:redis消费了一个任务:消费的订单OrderId为OID00000012
1525087160045ms:redis消费了一个任务:消费的订单OrderId为OID00000012
1525087160048ms:redis消费了一个任务:消费的订单OrderId为OID00000012
1525087160053ms:redis消费了一个任务:消费的订单OrderId为OID00000013
1525087160064ms:redis消费了一个任务:消费的订单OrderId为OID00000013
1525087160065ms:redis消费了一个任务:消费的订单OrderId为OID00000014
1525087160069ms:redis消费了一个任务:消费的订单OrderId为OID00000014
当前没有等待的任务
当前没有等待的任务
当前没有等待的任务
当前没有等待的任务

显然,出现了多个线程消费同一个资源的情况。

5.3 解决方案

  1. 用分布式锁,但是用分布式锁,性能下降了,该方案不细说。
  2. 对ZREM的返回值进行判断,只有大于0的时候,才消费数据,于是将consumerDelayMessage()方法里的
if(nowSecond >= score){String orderId = ((Tuple)items.toArray()[0]).getElement();jedis.zrem("OrderId", orderId);System.out.println(System.currentTimeMillis()+"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);
}

修改为

if(nowSecond >= score){String orderId = ((Tuple)items.toArray()[0]).getElement();Long num = jedis.zrem("OrderId", orderId);if( num != null && num>0){System.out.println(System.currentTimeMillis()+"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);}
}

在这种修改后,重新运行ThreadTest类,发现输出正常了

5.4 思路二

该方案使用redis的Keyspace Notifications,中文翻译就是键空间机制,就是利用该机制可以在key失效之后,提供一个回调,实际上是redis会给客户端发送一个消息。是需要redis版本2.8以上。

5.5 实现二

在redis.conf中,加入一条配置

notify-keyspace-events Ex

运行代码如下

package com.rjzheng.delay5;import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPubSub;public class RedisTest {private static final String ADDR = "127.0.0.1";private static final int PORT = 6379;private static JedisPool jedis = new JedisPool(ADDR, PORT);private static RedisSub sub = new RedisSub();public static void init() {new Thread(new Runnable() {public void run() {jedis.getResource().subscribe(sub, "__keyevent@0__:expired");}}).start();}public static void main(String[] args) throws InterruptedException {init();for(int i =0;i<10;i++){String orderId = "OID000000"+i;jedis.getResource().setex(orderId, 3, orderId);System.out.println(System.currentTimeMillis()+"ms:"+orderId+"订单生成");}}static class RedisSub extends JedisPubSub {@Overridepublic void onMessage(String channel, String message) {System.out.println(System.currentTimeMillis()+"ms:"+message+"订单取消");}}
}

输出如下

1525096202813ms:OID0000000订单生成
1525096202818ms:OID0000001订单生成
1525096202824ms:OID0000002订单生成
1525096202826ms:OID0000003订单生成
1525096202830ms:OID0000004订单生成
1525096202834ms:OID0000005订单生成
1525096202839ms:OID0000006订单生成
1525096205819ms:OID0000000订单取消
1525096205920ms:OID0000005订单取消
1525096205920ms:OID0000004订单取消
1525096205920ms:OID0000001订单取消
1525096205920ms:OID0000003订单取消
1525096205920ms:OID0000006订单取消
1525096205920ms:OID0000002订单取消

可以明显看到3秒过后,订单取消了

ps:redis的pub/sub 机制存在一个硬伤,官网内容如下

原 :Because Redis Pub/Sub is fire and forget currently there is no way to use this feature if your application demands reliable notification of events, that is, if your Pub/Sub client disconnects, and reconnects later, all the events delivered during the time the client was disconnected are lost.

译 : Redis的发布/订阅目前是即发即弃(fire and forget)模式的,因此无法实现事件的可靠通知。也就是说,如果发布/订阅的客户端断链之后又重连,则在客户端断链期间的所有事件都丢失了。 因此,方案二不是太推荐。当然,如果你对可靠性要求不高,可以使用。

5.6 优缺点

优点:

  1. 由于使用Redis作为消息通道,消息都存储在Redis中。如果发送程序或者任务处理程序挂了,重启之后,还有重新处理数据的可能性。
  2. 做集群扩展相当方便
  3. 时间准确度高

缺点:

  1. 需要额外进行redis维护

6 方案五:使用消息队列

我们可以采用rabbitMQ的延时队列。RabbitMQ具有以下两个特性,可以实现延迟队列

  • RabbitMQ可以针对Queue和Message设置 x-message-tt,来控制消息的生存时间,如果超时,则消息变为dead
    letter
  • lRabbitMQ的Queue可以配置x-dead-letter-exchange
    和x-dead-letter-routing-key(可选)两个参数,用来控制队列内出现了deadletter,则按照这两个参数重新路由。

结合以上两个特性,就可以模拟出延迟消息的功能,具体的,我改天再写一篇文章,这里再讲下去,篇幅太长。

6.1 优缺点

优点: 高效,可以利用rabbitmq的分布式特性轻易的进行横向扩展,消息支持持久化增加了可靠性。

缺点:本身的易用度要依赖于rabbitMq的运维.因为要引用rabbitMq,所以复杂度和成本变高

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/167329.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于Java的汽车维修预约管理系统设计与实现(源码+lw+部署文档+讲解等)

文章目录 前言具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序&#xff08;小蔡coding&#xff09; 代码参考数据库参考源码获取 前言 &#x1f497;博主介绍&#xff1a;✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域优质创作者&am…

Java学习_day03_变量数据类型运算符

文章目录 变量定义声明赋值使用简化 数据类型基本数据类型整型浮点型布尔型字符型空型 引用数据类型数据类型转换自动类型转换强制类型转换 运算符算术运算符赋值运算符比较运算符逻辑运算符位运算符条件运算符一元运算符二元运算符三元运算符运算符优先级 变量 变量类似于数学…

云服务器搭建Hadoop分布式

文章目录 1.服务器配置2.Java环境3. 安装Hadoop4. 集群配置5. 编写集群的启动脚本 1.服务器配置 服务器主机名配置115.157.197.82s110核115.157.197.84s210核115.157.197.109s310核115.157.197.31s410核115.157.197.60gracal10核 所有的软件安装在/opt/module下&#xff0c;软…

光学知识整理-偏振光

偏振光 目录基础概念基础概念的补充平面偏振光&#xff08;线偏振光&#xff09;部分偏振光圆偏振光椭圆偏振光菲涅耳公式相位关系 反射折射所引起的偏振态的改变斯托克斯倒逆关系重要参数 目录 基础概念 光是横波&#xff1a;光是电磁波,其电场分量(电场强度)E、磁场分量(磁…

biquad滤波器的设计

1.介绍 Biquad滤波器是一种常用的数字滤波器结构&#xff0c;它使用二阶差分方程&#xff08;difference equation&#xff09;来实现滤波功能。它得名于其包含两个极点&#xff08;poles&#xff09;和一个零点&#xff08;zero&#xff09;。 双二阶滤波器(biquad)是最常用…

当我让文心一言写个代码来庆祝1024程序员节,它写的代码是……

先让它写个自我介绍吧~ 大家好&#xff0c;我是一个人工智能语言模型&#xff0c;我的中文名是文心一言&#xff0c;英文名是ERNIE Bot。我可以协助您完成范围广泛的任务并提供有关各种主题的信息&#xff0c;比如回答问题&#xff0c;提供定义和解释及建议。如果您有任何问题…

改进YOLOv5 | 头部解耦 | 将YOLOX解耦头添加到YOLOv5 | 涨点杀器

改进YOLOv5 | 头部解耦 | 将YOLOX解耦头添加到YOLOv5 论文地址:https://arxiv.org/abs/2107.08430 文章目录 改进YOLOv5 | 头部解耦 | 将YOLOX解耦头添加到YOLOv51. 解耦头原理2. 解耦头对收敛速度的影响3. 解耦头对精度的影响4. 代码改进方式第一步第二步第三步第四步第五步本…

Kotlin笔记(六):泛型的高级特性

前面学习了Kotlin中的泛型的基本用法,跟Java中的泛型大致相同&#xff0c;Kotlin在泛型方面还提供了不少特有的功能&#xff0c;掌握了这些功能&#xff0c;你将可以更好玩转Kotlin&#xff0c;同时还能实现一些不可思议的语法特性&#xff0c;那么我们自然不能错过这部分内容了…

Wordpress - Xydown独立下载页面插件

Wordpress - Xydown独立下载页面插件&#xff1b; 1.使用ftp将demo.php和download.php上传到网站根目录&#xff08;两个文件中设计网站信息的代码可根据实际情况修改为自己的信息&#xff09; 使用ftp将demo.php和download.php上传到网站根目录&#xff08;两个文件中设计…

[ Windows ] ping IP + Port 测试 ip 和 端口是否通畅

开发过程中经常会黑窗口中手动测试一下计划请求的目标ip和端口是否通畅&#xff0c;测试方式如下&#xff1a; 一、单纯测试ip是否能够 ping 通&#xff0c;这个比较熟悉了&#xff0c;运行 cmd 打开黑窗口 输入如下指令&#xff0c;能够如下提示信息&#xff0c;表示端口是通…

【AIGC核心技术剖析】用于高效 3D 内容创建生成(从单视图图像生成高质量的纹理网格)

3D 内容创建的最新进展主要利用通过分数蒸馏抽样 &#xff08;SDS&#xff09; 生成的基于优化的 3D 生成。尽管已经显示出有希望的结果&#xff0c;但这些方法通常存在每个样本优化缓慢的问题&#xff0c;限制了它们的实际应用。在本文中&#xff0c;我们提出了DreamGaussian&…

Node.js、Vue的安装与使用(Linux OS)

Vue的安装与使用&#xff08;Linux OS&#xff09; Node.js的安装Vue的安装Vue的使用 操作系统&#xff1a;Ubuntu 20.04 LTS Node.js的安装 安装Node.js Node.js官方下载地址 1.选择合适的系统架构&#xff08;可通过uname -m查看&#xff09;版本安装 2.下载文件为tar.xz格…

微信小程序之个人中心授权登录

&#x1f3ac; 艳艳耶✌️&#xff1a;个人主页 &#x1f525; 个人专栏 &#xff1a;《Spring与Mybatis集成整合》《Vue.js使用》 ⛺️ 越努力 &#xff0c;越幸运。 1.了解微信授权登录 微信登录官网&#xff1a; 小程序登录https://developers.weixin.qq.com/miniprogram/d…

SystemVerilog Assertions应用指南 Chapter 1.17使用参数的SVA检验器

1.17使用参数的SVA检验器 SVA允许像 Verilog那样在检验器中使用参数( parameter)&#xff0c;这为创建可重用的属性提供了很大的灵活性。比如,两个信号间的延迟信息可以在检验器中用参数表示,那么这种检验器就可以在设计只有时序关系不同的情况中重用。例子1.2显示了个带延迟默…

人大金仓与哪吒科技达成战略合作,加快推动智慧港口建设

近日&#xff0c;人大金仓与哪吒港航智慧科技&#xff08;上海&#xff09;有限公司&#xff08;以下简称“哪吒科技”&#xff09;达成战略合作。双方旨在共享优势资源&#xff0c;联合为港口企业转型升级提供完备的技术支撑与行业解决方案。人大金仓总裁杜胜、哪吒科技总经理…

基于FPGA的图像拉普拉斯变换实现,包括tb测试文件和MATLAB辅助验证

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a vivado2019.2 3.部分核心程序 timescale 1ns / 1ps // // Company: // Engineer: // // Create Date: 202…

cdm解决‘ping‘ 或者nslookup不是内部或外部命令,也不是可运行的程序或批处理文件的问题

当我们在执行cmd时&#xff0c;会出现不是内部或外部命令&#xff0c;也不是可运行的程序的提示。 搜索环境变量 点开高级 >> 环境变量 打开Path&#xff0c;看是否在Path变量值中存在以下项目&#xff1a; %SystemRoot%/system32; %SystemRoot%; %SystemRoot%/Syste…

Opencv之RANSAC算法用于直线拟合及特征点集匹配详解

Opencv之RANSAC算法用于直线拟合及特征点集匹配详解 讲述Ransac拟合与最小二乘在曲线拟合上的优缺点 讲述在进行特征点匹配时&#xff0c;最近邻匹配与Ransac匹配的不同之处 另外&#xff0c;Ransac也被用于椭圆拟合、变换矩阵求解等 1. 直线拟合 1.1 原理 RANSAC(RANdom …

Mysql中的RR 隔离级别,到底有没有解决幻读问题

Mysql 中的 RR 事务隔离级别&#xff0c;在特定的情况下会出现幻读的问题。所谓的幻读&#xff0c;表示在同一个事务中的两次相同条件的查询得到的数据条数不一样。 在 RR 级别下&#xff0c;什么情况下会出现幻读 这样一种情况&#xff0c;在事务 1 里面通过 update 语句触发当…