《OpenCV计算机视觉》-对图片的各种操作(均值、方框、高斯、中值滤波处理)及形态学处理

文章目录

  • 《OpenCV计算机视觉》-对图片的各种操作(均值、方框、高斯、中值滤波处理)
    • 边界填充
    • 阈值处理
    • 图像平滑处理
      • 生成椒盐图片
      • 均值滤波处理
      • 方框滤波处理
      • 高斯滤波处理
      • 中值滤波处理
    • 图像形态学
      • 腐蚀
      • 膨胀
      • 开运算
      • 闭运算
      • 顶帽和黑帽

《OpenCV计算机视觉》-对图片的各种操作(均值、方框、高斯、中值滤波处理)

边界填充

cv2.copyMakeBorder()是OpenCV库中的一个函数,用于给图像添加额外的边界(padding)。
copyMakeBorder(src: UMat, top: int, bottom: int, left: int, right: int, borderType: int, dst: UMat | None = ..., value: cv2.typing.Scalar = ...)
它有以下几个参数:
src:要扩充边界的原始图像。
top, bottom, left, right:相应方向上的边框宽度。
borderType:定义要添加边框的类型,它可以是以下的一种:
cv2.BORDER_CONSTANT:添加的边界框像素值为常数(需要额外再给定一个参数)。
cv2.BORDER_REFLECT:添加的边框像素将是边界元素的镜面反射,类似于gfedcba|abcdefgh|hgfedcba。 (交界处也复制了)
cv2.BORDER_REFLECT_101 或 cv2.BORDER_DEFAULT:和上面类似,但是有一些细微的不同,类似于gfedcb|abcdefgh|gfedcba  (交接处删除了)
cv2.BORDER_REPLICATE:使用最边界的像素值代替,类似于aaaaaa|abcdefgh|hhhhhhh
cv2.BORDER_WRAP:上下左右边依次替换,cdefgh|abcdefgh|abcdefg
ys = cv2.imread('demo1.png')
top,bottom,left,right = 50,50,50,50
constant = cv2.copyMakeBorder(ys,top,bottom,left,right,borderType=cv2.BORDER_CONSTANT,value=(100,20,220))
reflect = cv2.copyMakeBorder(ys,top,bottom,left,right,borderType=cv2.BORDER_REFLECT)
reflect101 = cv2.copyMakeBorder(ys,top,bottom,left,right,borderType=cv2.BORDER_REFLECT101)
replicate = cv2.copyMakeBorder(ys,top,bottom,left,right,borderType=cv2.BORDER_REPLICATE)
wrap = cv2.copyMakeBorder(ys,top,bottom,left,right,borderType=cv2.BORDER_WRAP)cv2.imshow('yuantu',ys)
cv2.waitKey(0)
cv2.imshow('CONSTANT',constant)
cv2.waitKey(0)
cv2.imshow('REFLECT',reflect)
cv2.waitKey(0)
cv2.imshow('REFLECT101',reflect101)
cv2.waitKey(0)
cv2.imshow('REPLICATE',replicate)
cv2.waitKey(0)
cv2.imshow('WRAP',wrap)
cv2.waitKey(0)

阈值处理

阈值处理是指剔除图像内像素值高于一定值或低于一定值的像素点。使用的方法为:
retval,dst=cv2.threshold(src,thresh,maxval,type)retval代表返回的阈值dst代表阈值分割结果图像,与原始图像具有相同的大小和类型src代表要进行阈值分割的图像,可以是多通道的,8位或32位浮点型数值thresh代表要设定的阈值maxval代表type参数位THRESH_BINARY或者THRESH_BINARY_INV类型时,需要设定的最大值type代表阈值分割的类型,具体内容如下表所示:选项                  像素值>thresh      其他情况
cv2.THRESH_BINARY         maxval              0
cv2.THRESH_BINARY_INV         0               maxval
cv2.THRESH_TRUNC          thresh              当前灰度值
cv2.THRESH_TOZERO         当前灰度值           0
cv2.THRESH_TOZERO_INV         0               当前灰度值
image = cv2.imread('demo1.png',0)
ret,binary=cv2.threshold(image,210,255,cv2.THRESH_BINARY)
ret1,binaryinv=cv2.threshold(image,210,255,cv2.THRESH_BINARY_INV)
ret2,trunc=cv2.threshold(image,210,255,cv2.THRESH_TRUNC)
ret3,tozero=cv2.threshold(image,210,255,cv2.THRESH_TOZERO)
ret4,tozeroinv=cv2.threshold(image,210,255,cv2.THRESH_TOZERO_INV)cv2.imshow('gray',image)
cv2.waitKey(0)
cv2.imshow('binary',binary)
cv2.waitKey(0)
cv2.imshow('binaryinv',binaryinv)
cv2.waitKey(0)
cv2.imshow('trunc',trunc)
cv2.waitKey(0)
cv2.imshow('tozero',tozero)
cv2.waitKey(0)
cv2.imshow('tozeroinv',tozeroinv)
cv2.waitKey(0)
cv2.destroyAllWindows()

图像平滑处理

图像平滑(smoothing)也称为“模糊处理”(bluring), 是一项简单且使用频率很高的图像处理方法。
可以用来压制、弱化或消除图像中的细节、突变、边缘和噪声。但最常见的是用来减少图像上的噪声或者失真。
降低图像分辨率时,平滑处理是很重要的。
下面是常用的一些滤波器均值滤波(邻域平均滤波)–> blur函数方框滤波–> boxFilter函数高斯滤波–>GaussianBlur函数中值滤波–>medianBlur函数dst=cv2.blur(src,ksize,anchor,borderType)dst是返回值src是需要处理的图像kszie是滤波核(卷积核)的大小anchor是锚点,默认值是(-1,-1)一般无需更改borderType是边界样式,一般无需更改
一般情况下,使用dst=cv2.blur(src,ksize)即可

生成椒盐图片

def add_peppersalt_noise(image,n=10000):result = image.copy()h, w=image.shape[:2] # 获取图片的高和宽for i in range(n):  # 生成n个椒盐噪声x = np.random.randint(1,h)y = np.random.randint(1,w)if np.random.randint(0,2) == 0:result[x, y] = 0else:result[x,y] =255return resultimage = cv2.imread('demo1.png')
cv2.imshow('sro',image)
cv2.waitKey(0)
noise = add_peppersalt_noise(image)
cv2.imshow('noise',noise)
cv2.waitKey(0)

均值滤波处理

blur_1 = cv2.blur(noise,(3,3))
cv2.imshow('blur_1',blur_1)
cv2.waitKey(0)blur_2 = cv2.blur(noise,(5,5))
cv2.imshow('blur_2',blur_2)
cv2.waitKey(0)

方框滤波处理

dst=cv2.boxFilter(src,ddepth,ksize,anchor,normalize,borderType)式中:● dst是返回值,表示进行方框滤波后得到的处理结果。● src 是需要处理的图像,即原始图像。● ddepth是处理结果图像的图像深度,一般使用-1表示与原始图像使用相同的图像深度。(可以理解为数据类型)● ksize 是滤波核的大小。滤波核大小是指在滤波处理过程中所选择的邻域图像的高 度和宽度。● anchor 是锚点,(指对应哪个区域)● normalize 表示在滤波时是否进行归一化。1.当值为True时,归一化,用邻域像素值的和除以面积。  此时方框滤波与 均值滤波 效果相同。2.当值为False时,不归一化,直接使用邻域像素值的和。和>255时使用255
# 方框滤波
boxFilter_1 = cv2.boxFilter(noise,-1,(3,3),normalize=True)
cv2.imshow('boxFilter_1',boxFilter_1)
cv2.waitKey(0)
boxFilter_2 = cv2.boxFilter(noise,-1,(3,3),normalize=False)
cv2.imshow('boxFilter_2',boxFilter_2)
cv2.waitKey(0)

高斯滤波处理

cv2.GaussianBlur(src, ksize[, sigmaX[, sigmaY[, dst]]])高斯滤波
参数说明:
src:输入图像,通常是一个NumPy数组。
ksize:滤波器的大小,它是一个元组,表示在水平和垂直方向上的像素数量。例如,(5, 5)表示一个5x5的滤波器。
sigmaX和sigmaY:分别表示在X轴和Y轴方向上的标准差。这些值与滤波器大小相同。默认情况下,它们都等于0,这意味着没有高斯模糊。
dst:输出图像,通常是一个NumPy数组。如果为None,则会创建一个新的数组来存储结果。
GaussianB = cv2.GaussianBlur(noise,(3,3),1)
cv2.imshow('GaussianBlur',GaussianB)
cv2.waitKey(0)

中值滤波处理

cv2.medianBlur(src, ksize[, dst])中值滤波参数说明:
src:输入图像。
ksize:滤波器的大小,它是一个整数,表示在水平和垂直方向上的像素数量。例如,5表示一个5x5的滤波器。
dst:输出图像,通常是一个NumPy数组。如果为None,则会创建一个新的数组来存储结果。
medianB = cv2.medianBlur(noise,3)
cv2.imshow('medianBlur',medianB)
cv2.waitKey(0)
cv2.destroyAllWindows()

图像形态学

腐蚀

1、图像腐蚀, 函数为:
cv2.erode(src, kernel, dst,anchor,iterations,borderType,borderValue)
src: 输入的图像
kernel: 用于腐蚀的结构元件如果element = Mat(),则使用3 × 3的矩形结构单元。
dst: 它是与src相同大小和类型的输出图像。
iterations:腐蚀操作的迭代次数,默认为1。次数越多, 腐蚀操作执行的次数越多,腐蚀效果越明显
sun = cv2.imread('sun.png')
cv2.imshow('sun',sun)
cv2.waitKey(0)
kernel = np.ones((3,3),np.uint8)
erosion_1 = cv2.erode(sun,kernel,iterations=2)
cv2.imshow('erosion_1',erosion_1)
cv2.waitKey(0)

膨胀

2、图像膨胀,   函数为:
cv2.dilate(img, kernel, iteration)
参数含义:
img – 目标图片
kernel – 进行操作的内核,默认为3×3的矩阵
iterations – 膨胀次数,默认为1
wenzi = cv2.imread('zimu.png')
cv2.imshow('src1',wenzi)
cv2.waitKey(0)
kernel = np.ones((2,2),np.uint8)
wenzi_new = cv2.dilate(wenzi,kernel,iterations=3)
cv2.imshow('wenzi_new',wenzi_new)
cv2.waitKey(0)

开运算

开运算:先腐蚀后膨胀。
zhiwen = cv2.imread('zhiwen1.png')
cv2.imshow('scr2',zhiwen)
cv2.waitKey(0)
kernel = np.ones((2,2),np.uint8)
zhiwen_new = cv2.morphologyEx(zhiwen,cv2.MORPH_OPEN,kernel)
cv2.imshow('zhiwen_new',zhiwen_new)
cv2.waitKey(0)

闭运算

闭运算:先膨胀后腐蚀
zhiwen = cv2.imread('zhiwen2.png')
cv2.imshow('scr3',zhiwen)
cv2.waitKey(0)
kernel = np.ones((4,4),np.uint8)
zhiwen_new = cv2.morphologyEx(zhiwen,cv2.MORPH_CLOSE,kernel)
cv2.imshow('zhiwen_new',zhiwen_new)
cv2.waitKey(0)cv2.destroyAllWindows()

顶帽和黑帽

顶帽 = 原始图像 - 开运算结果(先腐蚀后膨胀)
黑帽 = 闭运算(先膨胀后腐蚀) - 原始图像
sun = cv2.imread('sun.png')
cv2.imshow('sun_yuantu',sun)
cv2.waitKey(0)
kernel = np.ones((2,2),np.uint8)  #设置kenenel大小
#开运算
open_sun=cv2.morphologyEx(sun,cv2.MORPH_OPEN,kernel)
cv2.imshow('open_sun',open_sun)
cv2.waitKey(0)
#顶帽
tophat = cv2.morphologyEx(sun,cv2.MORPH_TOPHAT,kernel)
cv2.imshow('TOPHAT',tophat)
cv2.waitKey(0)
#闭运算
close_sun=cv2.morphologyEx(sun,cv2.MORPH_CLOSE,kernel)
cv2.imshow('close_sun',close_sun)
cv2.waitKey(0)
#黑帽
blackhat = cv2.morphologyEx(sun,cv2.MORPH_BLACKHAT,kernel)
cv2.imshow('BLACKHAT',blackhat)
cv2.waitKey(0)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/496796.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

moviepy将图片序列制作成视频并加载字幕 - python 实现

DataBall 助力快速掌握数据集的信息和使用方式,会员享有 百种数据集,持续增加中。 需要更多数据资源和技术解决方案,知识星球: “DataBall - X 数据球(free)” -------------------------------------------------------------…

面试突击-JAVA集合类(持续更新...)

前言 这篇文档非常适合面试突击人群,java集合类是面试高频问点,阅读完此文章可以直接应对面试官一切问题,最终吊打面试官。 概览 Java 集合,也叫作容器,主要是由两大接口派生而来:一个是 Collection接口&am…

如何计算相位差

如何计算相位差 假设我们有两个同频率的正弦信号: 这里两个信号的角频率w2πf是相同的,根据同频正弦信号相位差的计算方法,直接用两个信号的相位相减。 再来看利用波形图计算相位差的例子: 另一种计算方式:

龙智出席2024零跑智能汽车技术论坛,分享功能安全、需求管理、版本管理、代码扫描等DevSecOps落地实践

龙智快讯 2024年12月5日,由零跑和盖世汽车主办的“2024零跑智能汽车技术论坛”在杭州零跑总部圆满落幕。此次技术论坛聚焦AI语言大模型、AUTOSAR AP平台、DevOps、端到端自动驾驶等热点话题展开探讨,旨在推动智能汽车技术的创新与发展。 龙智作为国内领先…

剑指Offer|LCR 014. 字符串的排列

LCR 014. 字符串的排列 给定两个字符串 s1 和 s2,写一个函数来判断 s2 是否包含 s1 的某个变位词。 换句话说,第一个字符串的排列之一是第二个字符串的 子串 。 示例 1: 输入: s1 "ab" s2 "eidbaooo" 输出: True 解…

LabVIEW条件配置对话框

条件配置对话框(Configure Condition Dialog Box) 要求:Base Development System 当右键单击**条件禁用结构(Conditional Disable Structure)**并选择以下选项时,会显示此对话框: Add Subdiagr…

YOLO11改进-注意力-引入自调制特征聚合模块SMFA

本篇文章将介绍一个新的改进机制——SMFA(自调制特征聚合模块),并阐述如何将其应用于YOLOv11中,显著提升模型性能。随着深度学习在计算机视觉中的不断进展,目标检测任务也在快速发展。YOLO系列模型(You Onl…

嵌入式硬件杂谈(七)IGBT MOS管 三极管应用场景与区别

引言:在现代嵌入式硬件设计中,开关元件作为电路中的重要组成部分,起着至关重要的作用。三种主要的开关元件——IGBT(绝缘栅双极型晶体管)、MOSFET(金属氧化物半导体场效应晶体管)和三极管&#…

Numpy指南:解锁Python多维数组与矩阵运算(上)

文章一览 前言一、nmupy 简介和功能二、numpy 安装三、numpy基本使用3.1、ndarray 对象3.2、基础数据结构 ndarray 数组3.3、ndarray 数组定义3.4、ndarray 数组属性计算3.5、ndarray 数组创建3.5.1 通过 array 方式创建 ndarray 数组3.5.2 通过 arange 创建数组3.5.3 通过 lin…

SpringCloudAlibaba升级手册-nacos问题记录

目录 一、前言 二、升级过程 1.问题 2.原因 3.出处 4.理论解决 5.测试环境问题 6.Spring Cloud Alibaba版本对比 7. Spring Cloud Alibaba适配组件版本对比 8.降低Spring Cloud版本 9.SpringCloud与SpringBoot兼容对比表 10.naocs-client版本对比 三、最终解决 一…

MetaRename for Mac,适用于 Mac 的文件批量重命名工具

在处理大量文件时,为每个文件手动重命名既耗时又容易出错。对于摄影师、设计师、开发人员等需要频繁处理和整理文件的专业人士来说,找到一款能够简化这一过程的工具是至关重要的。MetaRename for Mac 就是这样一款旨在提高工作效率的应用程序&#xff0c…

blender中合并的模型,在threejs中显示多个mesh;blender多材质烘培成一个材质

描述:在blender中合并的模型导出为glb,在threejs中导入仍显示多个mesh,并不是统一的整体,导致需要整体高亮或者使用DragControls等不能统一控制。 原因:模型有多个材质,在blender中合并的时候,…

IntelliJ Idea常用快捷键详解

文章目录 IntelliJ Idea常用快捷键详解一、引言二、文本编辑与导航1、文本编辑2、代码折叠与展开 三、运行和调试四、代码编辑1、代码补全 五、重构与优化1、重构 六、使用示例代码注释示例代码补全示例 七、总结 IntelliJ Idea常用快捷键详解 一、引言 在Java开发中&#xff…

OpenFOAM2.3.x 圆柱体网格 blockMeshDict

一、使用更高版本的blockMeshDict 1. 设置bashrc alias of7source /opt/OpenFOAM-7/OpenFOAM-7/etc/bashrc alias of2export FOAM_INST_DIR/opt/OpenFOAM foamDotFile$FOAM_INST_DIR/OpenFOAM-2.3.x/etc/bashrc [ -f $foamDotFile ] && . $foamDotFile export LD_LI…

复习打卡大数据篇——Hadoop MapReduce

目录 1. MapReduce基本介绍 2. MapReduce原理 1. MapReduce基本介绍 什么是MapReduce MapReduce是一个分布式运算程序的编程框架,核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序,并发运行在Hadoop集群上。 MapRed…

EDGE浏览器每次关闭时再次打开保存的密码就消失如何解决

文章目录 EDGE浏览器每次重启的时候保存的密码都消失如何解决? 打开EDGE浏览器点击三个点 点击设置 点击隐私、搜索和服务 找到选择每次关闭浏览器时要清除的内容 将开启的关闭即可

akamai3.0 wizzair 网站 分析

声明: 本文章中所有内容仅供学习交流使用,不用于其他任何目的,抓包内容、敏感网址、数据接口等均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关! 有相关问题请第一时间头像私信联系我删…

中间件xxl-job安装

拉取镜像 docker pull xuxueli/xxl-job-admin:2.4.2 创建xxl-job-admin容器 docker create --name xxl-job-admin -p 9099:8080 -e PARAMS"--spring.datasource.urljdbc:mysql://192.168.96.57:3306/xxl_job2Unicodetrue&characterEncodingUTF-8 --spring.dataso…

软考-信息安全-网络安全体系与网络安全模型

4.1 网络安全体系概述 网络安全保障是一项复杂的系统工程,是安全策略,多种技术,管理方法和人员安全素质的综合。 4.1.1 网络安全体系概念 现代的网络安全问题变化莫测,要保障网络系统的安全,应当把相应的安全策略&a…

低代码开源项目Joget的研究——Joget8社区版安装部署

大纲 环境准备安装必要软件配置Java配置JAVA_HOME配置Java软链安装三方库 获取源码配置MySql数据库创建用户创建数据库导入初始数据 配置数据库连接配置sessionFactory(非必须,如果后续保存再配置)编译下载tomcat启动下载aspectjweaver移动jw…