pytorch 入门 (三)案例一:mnist手写数字识别

本文为🔗小白入门Pytorch内部限免文章

  • 🍨 本文为🔗小白入门Pytorch中的学习记录博客
  • 🍦 参考文章:【小白入门Pytorch】mnist手写数字识别
  • 🍖 原作者:K同学啊

目录

  • 一、 前期准备
    • 1. 设置GPU
    • 2. 导入数据
    • 3. 查看数据及可视化
      • 3.1 方式一:
      • 3.1 方式二:
  • 二、构建简单的CNN网络
  • 三、 训练模型
    • 1. 设置超参数
    • 2. 编写训练函数
    • 3. 编写测试函数
    • 4. 正式训练
  • 四、 结果可视化
  • 五、知识点详解

一、 前期准备

import torchprint(torch.__version__) # 查看pytorch版本,注意如果是使用和鲸自带的环境,需要正确选择,否则下一步导入torchvision可能会报错
1.8.1+cpu

C:\Users\chengyuanting\.conda\envs\pytorch_cpu\lib\site-packages\tqdm\auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.htmlfrom .autonotebook import tqdm as notebook_tqdm

1. 设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
import numpy as np
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")device
device(type='cpu')

2. 导入数据

使用dataset下载MNIST数据集,并划分好训练集与测试集

使用dataloader加载数据,并设置好基本的batch_size

torchvision.datasets.MNIST详解

torchvision.datasets是Pytorch自带的一个数据库,我们可以通过代码在线下载数据,这里使用的是torchvision.datasets中的MNIST数据集。

函数原型:

torchvision.datasets.MNIST(root, train=True, transform=None, target_transform=None, download=False)  

参数说明:

  • root (string) :数据地址
  • train (string) :True = 训练集,False = 测试集
  • download (bool,optional) : 如果为True,从互联网上下载数据集,并把数据集放在root目录下。
  • transform (callable, optional ):这里的参数选择一个你想要的数据转化函数,直接完成数据转化
  • target_transform (callable,optional) :接受目标并对其进行转换的函数/转换。
train_ds = torchvision.datasets.MNIST('data', train=True, transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensordownload=True)test_ds  = torchvision.datasets.MNIST('data', train=False, transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensordownload=True)

torch.utils.data.DataLoader详解

torch.utils.data.DataLoader是Pytorch自带的一个数据加载器,结合了数据集和取样器,并且可以提供多个线程处理数据集。

函数原型:

torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=None, sampler=None, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, multiprocessing_context=None, generator=None, *, prefetch_factor=2, persistent_workers=False, pin_memory_device=‘’)

参数说明:

  • dataset(string) :加载的数据集
  • batch_size (int,optional) :每批加载的样本大小(默认值:1)
  • shuffle(bool,optional) : 如果为True,每个epoch重新排列数据。
  • sampler (Sampler or iterable, optional) : 定义从数据集中抽取样本的策略。 可以是任何实现了 len 的 Iterable。 如果指定,则不得指定 shuffle 。
  • batch_sampler (Sampler or iterable, optional) : 类似于sampler,但一次返回一批索引。与 batch_size、shuffle、sampler 和 drop_last 互斥。
  • num_workers(int,optional) : 用于数据加载的子进程数。 0 表示数据将在主进程中加载(默认值:0)。
  • pin_memory (bool,optional) : 如果为 True,数据加载器将在返回之前将张量复制到设备/CUDA 固定内存中。 如果数据元素是自定义类型,或者collate_fn返回一个自定义类型的批次。
  • drop_last(bool,optional) : 如果数据集大小不能被批次大小整除,则设置为 True 以删除最后一个不完整的批次。 如果 False 并且数据集的大小不能被批大小整除,则最后一批将保留。 (默认值:False)
  • timeout(numeric,optional) : 设置数据读取的超时时间 , 超过这个时间还没读取到数据的话就会报错。(默认值:0)
  • worker_init_fn(callable,optional) : 如果不是 None,这将在步长之后和数据加载之前在每个工作子进程上调用,并使用工作 id([0,num_workers - 1] 中的一个 int)的顺序逐个导入。 (默认:None)
batch_size = 32train_dl = torch.utils.data.DataLoader(train_ds, batch_size=batch_size, shuffle=True)test_dl  = torch.utils.data.DataLoader(test_ds, batch_size=batch_size)

3. 查看数据及可视化

3.1 方式一:

# 取一个批次查看数据格式
# 数据的shape为:[batch_size, channel, height, weight]
# 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度。
imgs, labels = next(iter(train_dl)) # 由于数据加载器被设置为随机打乱数据(shuffle=True),因此每次调用next函数时,都会从数据集中随机选择一个批次的数据。
imgs.shape
torch.Size([32, 1, 28, 28])

squeeze()函数的功能是从矩阵shape中,去掉维度为1的。例如一个矩阵是的shape是(5, 1),使用过这个函数后,结果为(5, )。

#指定图片大小,图像大小为20宽,5高的绘图(单位为英寸inch)
plt.figure(figsize=(20,5))
for i,img in enumerate(imgs[:20]):# 维度缩减npimg = np.squeeze(img.numpy())plt.subplot(2,10,i+1) # 将整个figure分成2行10列,绘制第i+1个子图plt.imshow(npimg,cmap=plt.cm.binary)plt.axis('off') # 这行代码关闭了当前子图的坐标轴,使得图像没有任何坐标轴标签或刻度。

请添加图片描述

3.1 方式二:

#其他方式查看数据情况
"""
说明:
这段代码的目的是从MNIST训练数据集中取前10个样本,
并在2行5列的布局中显示这些样本的图像和标签。
"""
# 查看数据的数量:
print(len(train_ds))
# 查看单个样本:
image,label = train_ds[0]
print("Label:",label)# plt.imshow(image,cmap='gray') # 为了在matplotlib中正确显示该图像,您需要将其从(1, 28, 28)变形为(28, 28)。这可以通过使用numpy的squeeze函数来实现。
# 将图像张量转换为numpy数组并移除单通道维度
image_np = image.numpy().squeeze()
plt.imshow(image_np,cmap = 'gray')
plt.show()# 查看图像的尺寸:
print("图像尺寸:",image.size)
print("图像尺寸(移除单通道):",image_np.size)# 查看多个样本:
fig,axes = plt.subplots(2,5,figsize = (10,5)) # 使用plt.subplots函数创建一个绘图窗口(figure:10英寸宽5英寸高)和一组子图(axes)。
for i,ax in enumerate(axes.ravel()):  # 这里,axes是一个2x5的数组,所以使用ravel()函数将其转变为一个长度为10的一维数组,方便遍历。image,label = train_ds[i] # image是一个表示图像的张量,label是图像对应的标签。# 将图像张量转换为numpy数组并移除单通道维度image_np = image.numpy().squeeze()ax.imshow(image_np,cmap = 'gray') # 使用子图对象ax的imshow方法显示图像。cmap='gray'指定使用灰度颜色映射。ax.set_title(f"Label:{label}")ax.axis('off')
plt.tight_layout() # 调整子图之间的间距,确保它们不会彼此重叠。
plt.show() # 显示绘图窗口和所有子图。
60000
Label: 5

在这里插入图片描述

图像尺寸: <built-in method size of Tensor object at 0x0000022EC1D81CC0>
图像尺寸(移除单通道): 784

在这里插入图片描述

二、构建简单的CNN网络

对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。

  • nn.Conv2d为卷积层,用于提取图片的特征,传入参数为输入channel,输出channel,池化核大小
  • nn.MaxPool2d为池化层,进行下采样,用更高层的抽象表示图像特征,传入参数为池化核大小
  • nn.ReLU为激活函数,使模型可以拟合非线性数据
  • nn.Linear为全连接层,可以起到特征提取器的作用,最后一层的全连接层也可以认为是输出层,传入参数为输入特征数和输出特征数(输入特征数由特征提取网络计算得到,如果不会计算可以直接运行网络,报错中会提示输入特征数的大小,下方网络中第一个全连接层的输入特征数为1600)
  • nn.Sequential可以按构造顺序连接网络,在初始化阶段就设定好网络结构,不需要在前向传播中重新写一遍

网络结构图

Image Name

import torch.nn.functional as Fnum_classes = 10  # 图片的类别数class Model(nn.Module):def __init__(self):super().__init__()# 特征提取网络self.conv1 = nn.Conv2d(1, 32, kernel_size=3)  # 第一层卷积,卷积核大小为3*3self.pool1 = nn.MaxPool2d(2)                  # 设置池化层,池化核大小为2*2self.conv2 = nn.Conv2d(32, 64, kernel_size=3) # 第二层卷积,卷积核大小为3*3   self.pool2 = nn.MaxPool2d(2) # 分类网络self.fc1 = nn.Linear(1600, 64)          self.fc2 = nn.Linear(64, num_classes)# 前向传播def forward(self, x):x = self.pool1(F.relu(self.conv1(x)))     x = self.pool2(F.relu(self.conv2(x)))x = torch.flatten(x,start_dim = 1) # x.view(x.size(0), -1) 展平张量x = F.relu(self.fc1(x))x = self.fc2(x)return x

加载并打印模型

!pip install torchinfo -i https://pypi.mirrors.ustc.edu.cn/simple/
Defaulting to user installation because normal site-packages is not writeable
Looking in indexes: https://pypi.mirrors.ustc.edu.cn/simple/
Requirement already satisfied: torchinfo in c:\users\chengyuanting\appdata\roaming\python\python39\site-packages (1.8.0)
from torchinfo import summary
# 将模型转移到GPU中(我们模型运行均在GPU中进行)
model = Model().to(device)summary(model)
=================================================================
Layer (type:depth-idx)                   Param #
=================================================================
Model                                    --
├─Conv2d: 1-1                            320
├─MaxPool2d: 1-2                         --
├─Conv2d: 1-3                            18,496
├─MaxPool2d: 1-4                         --
├─Linear: 1-5                            102,464
├─Linear: 1-6                            650
=================================================================
Total params: 121,930
Trainable params: 121,930
Non-trainable params: 0
=================================================================
# 也可以直接查看模型,但是这样不显示参数数量
model
Model((conv1): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1))(pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(conv2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1))(pool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(fc1): Linear(in_features=1600, out_features=64, bias=True)(fc2): Linear(in_features=64, out_features=10, bias=True)
)

三、 训练模型

1. 设置超参数

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

2. 编写训练函数

1. optimizer.zero_grad()

函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。

2. loss.backward()

PyTorch的反向传播(即tensor.backward())是通过autograd包来实现的,autograd包会根据tensor进行过的数学运算来自动计算其对应的梯度。

具体来说,torch.tensor是autograd包的基础类,如果你设置tensor的requires_grads为True,就会开始跟踪这个tensor上面的所有运算,如果你做完运算后使用tensor.backward(),所有的梯度就会自动运算,tensor的梯度将会累加到它的.grad属性里面去。

更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个w的requires_grads为True,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用loss.backward()后,会一层层的反向传播计算每个w的梯度值,并保存到该w的.grad属性中。

如果没有进行tensor.backward()的话,梯度值将会是None,因此loss.backward()要写在optimizer.step()之前。

3. optimizer.step()

step()函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行optimizer.step()函数前应先执行loss.backward()函数来计算梯度。

注意:optimizer只负责通过梯度下降进行优化,而不负责产生梯度,梯度是tensor.backward()方法产生的。

# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片num_batches = len(dataloader)   # 批次数目,1875(60000/32)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batchesreturn train_acc, train_loss
  • pred.argmax(1) 返回数组 pred 在第一个轴(即行)上最大值所在的索引。这通常用于多类分类问题中,其中 pred 是一个包含预测概率的二维数组,每行表示一个样本的预测概率分布。
  • (pred.argmax(1) == y)是一个布尔值,其中等号是否成立代表对应样本的预测是否正确(True 表示正确,False 表示错误)。
  • .type(torch.float)是将布尔数组的数据类型转换为浮点数类型,即将 True 转换为 1.0,将 False 转换为 0.0。
  • .sum()是对数组中的元素求和,计算出预测正确的样本数量。
  • .item()将求和结果转换为标量值,以便在 Python 中使用或打印。

(pred.argmax(1) == y).type(torch.float).sum().item()表示计算预测正确的样本数量,并将其作为一个标量值返回。这通常用于评估分类模型的准确率或计算分类问题的正确预测数量。

3. 编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss        = loss_fn(target_pred, target)test_loss += loss.item()test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc  /= sizetest_loss /= num_batchesreturn test_acc, test_loss

4. 正式训练

1. model.train()

model.train()的作用是启用 Batch Normalization 和 Dropout。

如果模型中有BN层(Batch Normalization)和Dropout,需要在训练时添加model.train()model.train()是保证BN层能够用到每一批数据的均值和方差。对于Dropoutmodel.train()是随机取一部分网络连接来训练更新参数。

2. model.eval()

model.eval()的作用是不启用 Batch Normalization 和 Dropout。

如果模型中有BN层(Batch Normalization)和Dropout,在测试时添加model.eval()model.eval()是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。对于Dropoutmodel.eval()是利用到了所有网络连接,即不进行随机舍弃神经元。

训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。

epochs     = 5
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
Epoch: 1, Train_acc:78.2%, Train_loss:0.732, Test_acc:92.3%,Test_loss:0.255
Epoch: 2, Train_acc:94.3%, Train_loss:0.191, Test_acc:96.2%,Test_loss:0.123
Epoch: 3, Train_acc:96.3%, Train_loss:0.121, Test_acc:97.4%,Test_loss:0.091
Epoch: 4, Train_acc:97.1%, Train_loss:0.094, Test_acc:98.0%,Test_loss:0.067
Epoch: 5, Train_acc:97.6%, Train_loss:0.079, Test_acc:98.1%,Test_loss:0.061
Done

四、 结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

五、知识点详解

本文使用的是最简单的CNN模型,如果是第一次接触深度学习的话,可以先试着把代码跑通,然后再尝试去理解其中的代码。

  1. MNIST手写数字数据集介绍

MNIST手写数字数据集来源于是美国国家标准与技术研究所,是著名的公开数据集之一。数据集中的数字图片是由250个不同职业的人纯手写绘制,数据集获取的网址为:http://yann.lecun.com/exdb/mnist/ (下载后需解压)。我们一般会采用(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()这行代码直接调用,这样就比较简单

MNIST手写数字数据集中包含了70000张图片,其中60000张为训练数据,10000为测试数据,70000张图片均是28*28,数据集样本如下:

Image Name

如果我们把每一张图片中的像素转换为向量,则得到长度为28*28=784的向量。因此我们可以把训练集看成是一个[60000,784]的张量,第一个维度表示图片的索引,第二个维度表示每张图片中的像素点。而图片里的每个像素点的值介于0-1之间。

Image Name

  1. 神经网络程序说明

神经网络程序可以简单概括如下:

Image Name


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/167386.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

蓝桥每日一题(day 4: 蓝桥592.门牌制作)--模拟--easy

#include <iostream> using namespace std; int main() {int res 0;for(int i 1; i < 2021; i ){int b i;while(b){if (b % 10 2) res ;b / 10;}}cout << res; return 0; }

最强英文开源模型LLaMA架构探秘,从原理到源码

导读&#xff1a; LLaMA 65B是由Meta AI&#xff08;原Facebook AI&#xff09;发布并宣布开源的真正意义上的千亿级别大语言模型&#xff0c;发布之初&#xff08;2023年2月24日&#xff09;曾引起不小的轰动。LLaMA的横空出世&#xff0c;更像是模型大战中一个搅局者。虽然它…

doc与docx文档转html,格式样式不变(包含图片转换)

最近做一个富文本的需求&#xff0c;要求把文档内容转换到富文本内&#xff0c;文档中的格式也好&#xff0c;样式也好&#xff0c;图片啥的都要一致展示&#xff1b;踩了不少坑&#xff0c;据说word文档其实是一个压缩包&#xff0c;我不是特别清楚但是也能理解&#xff0c;自…

pymysql连接Mariadb/Mysql出现错误(配置正确情况下)解决办法

场景&#xff1a;在kali中使用python中pymysql对Mariadb进行连接&#xff0c;在整个过程中配置全部正确&#xff0c;但是就是无法进行连接&#xff0c;提示结果如下&#xff1a; Access denied for user rootlocalhost解决办法&#xff1a;进入数据库中&#xff0c;将默认密码…

自然语言处理---huggingface平台使用指南

1 huggingface介绍 Huggingface总部位于纽约&#xff0c;是一家专注于自然语言处理、人工智能和分布式系统的创业公司。他们所提供的聊天机器人技术一直颇受欢迎&#xff0c;但更出名的是他们在NLP开源社区上的贡献。Huggingface一直致力于自然语言处理NLP技术的平民化(democr…

C# 文件 校验:MD5、SHA1、SHA256、SHA384、SHA512、CRC32、CRC64

文件 校验 算法&#xff1a;MD5、SHA1、SHA256、SHA384、SHA512、CRC32、CRC64 (免费) 编程语言&#xff1a;C# 功能&#xff1a;文件 哈希 属性 校验算法&#xff1a;MD5、SHA1、SHA256、SHA384、SHA512、CRC32、CRC64。 下载&#xff08;免费&#xff09;&#xff1a;htt…

瑞萨e2studio(27)----使用EZ-CUBE3烧录

瑞萨e2studio.27--使用EZ-CUBE3烧录 概述视频教学样品申请引脚配置EZ-CUBE3 仿真器开关设置对RA族MCU进行Flash编程蓝色 LED 指示灯的状态信息 概述 EZ-CUBE3&#xff08;CYRCNEZCUBE03&#xff09;是具有Flash存储器编程功能的片上调试仿真器&#xff0c;可以用于调试MCU程序…

Vue2基础知识(一) 认识Vue

&#x1f48c; 所属专栏&#xff1a;【Vue2】&#x1f600; 作 者&#xff1a;长安不及十里&#x1f4bb;工作&#xff1a;目前从事电力行业开发&#x1f308;目标&#xff1a;全栈开发&#x1f680; 个人简介&#xff1a;一个正在努力学技术的Java工程师&#xff0c;专注基础和…

【Javascript】构造函数之new的作用

目录 new的作用 把对象返回了回来 无new 有new 把构造函数的this指向了要返回的对象 无new​编辑 有new new的执行流程 new的作用 创建了新空对象将构造函数的作用域赋值给新对象(this指向新对象)执行构造函数代码 &#xff08;为这个新对象添加属性&#xff09;返回新对…

Java EE-使用Servlet搭建一个简单的前后端交互程序

上述前端和后端的代码如下&#xff1a; 前端&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"vie…

优测云测试平台 | 有效的单元测试

一、前言 本文作者提出了一种评价单元测试用例的质量的思路&#xff0c;即判断用例是否达到测试的“四大目标”。掌握识别好的用例的能力&#xff0c;可以帮助我们高效地写出高质量的测试用例。 评判冰箱的好坏&#xff0c;并不需要有制造一台冰箱的能力。在开始写测试用例之…

经典链表问题:解析链表中的关键挑战

这里写目录标题 公共子节点采用集合或者哈希采用栈拼接两个字符串差和双指针 旋转链表 公共子节点 例如这样一道题&#xff1a;给定两个链表&#xff0c;找出它们的第一个公共节点。 具体的题目描述我们来看看牛客的一道题&#xff1a; 这里我们有四种解决办法&#xff1a; …

晶振与晶体

文章目录 基础知识无源晶振 & 有源晶振 博文链接 基础知识 无源晶振 & 有源晶振 博文链接 晶振原理解析

Flutter的Constructors for public widgets should have a named ‘key‘ parameter警告

文章目录 问题描述问题原因修改方法详细解释 问题描述 Constructors for public widgets should have a named ‘key’ parameter. 如下图&#xff1a; 原本的代码 class MyTabPage extends StatefulWidget {override_MyTabPageState createState() > _MyTabPageState(…

大数据测试用例分析

基于大数据分析&#xff0c;对业务系统产生的日志进行智能分析&#xff0c;能够识别日志中的接口、参数、业务流&#xff0c;并依据分析的结果生成测试用例。 问题与背景 业务复杂 业务系统的复杂性&#xff0c;对测试人员的业务能力提出严格要求&#xff0c;加重测试成本。 …

【深度学习-第4篇】使用MATLAB快速实现CNN多变量回归预测

上一篇我们讲了使用CNN进行分类的MATLAB代码。 这一篇我们讲CNN的多变量回归预测。 是的&#xff0c;同样是傻瓜式的快速实现。 一、什么是多变量回归预测 多变量回归预测则是指同时考虑多个输入特征进行回归预测。举几个例子&#xff1a; 房价预测&#xff1a;给定一组房…

搜索问答技术学习:基于知识图谱+基于搜索和机器阅读理解(MRC)

目录 一、问答系统应用分析 二、搜索问答技术与系统 &#xff08;一&#xff09;需求和信息分析 问答需求类型 多样的数据源 文本组织形态 &#xff08;二&#xff09;主要问答技术介绍 发展和成熟度分析 重点问答技术基础&#xff1a;KBQA和DeepQA KBQA&#xff08;…

CentOS 系统安装和使用Docker服务

系统环境 使用下面的命令&#xff0c;可以查看CentOS系统的版本。 lsb_release -a结果&#xff1a; 说明我的系统是7.9.2009版本的 安装Docker服务 依次执行下面的指令&#xff1a; yum install -y yum-utilsyum install -y docker即可安装docker服务 如果这样安装不成功…

[ Windows-Nginx ]Windows服务器,Tomcat容器部署项目,整合Nginx

一、官网下载Nginx http://nginx.org/en/download.html 稳定版&#xff1a;windows的stable版本 注意&#xff1a;Nginx安装包不要放在中文目录下 二、conf目录下&#xff0c;修改nginx.conf文件 修改Nginx服务端口&#xff1a; 默认端口为80&#xff0c;即外界访问的入口…