2018年亚太杯APMCM数学建模大赛A题老年人平衡能力的实时训练模型求解全过程文档及程序

2018年亚太杯APMCM数学建模大赛

A题 老年人平衡能力的实时训练模型

原题再现

  跌倒在老年人中很常见。跌倒可能会导致老年人出现许多并发症,因为他们的康复能力通常较差,因此副作用可能会使人衰弱,从而加速身体衰竭。此外,对跌倒的恐惧可能会削弱行动能力,限制行动范围,从而显著恶化生活质量。因此,对老年人进行平衡能力评估,以帮助他们改善行动状态、纠正姿势和防止意外跌倒,具有重要的现实意义。

  目前还没有一个包罗万象的平衡定义。在医学中,平衡有两层含义。一种是当人体保持稳定姿势时的静态平衡状态。另一种是当身体在运动或受到外力时,自动调整自己以保持姿势时的动态平衡状态。在力学中,当物体上的合力为零时,就会产生平衡。身体的平衡或稳定性与重心的位置和支承面的面积有关。如果重心线落在轴承表面内,或者发生不平衡,则保持机体平衡。

  一家研究机构通过在老年受试者身上部署42个监测点进行了随机抽样测试。见下图所示各点的布局。
在这里插入图片描述
  根据附件中的实验数据,完成以下任务:

  问题1:根据附件2中的数据分析老年人的平衡特征。基于对步数、重心和运动的分析,建立特征提取模型。应用由42个监测点组成的系统提取25个身体平衡特征,对老年人的身体平衡进行综合评估。

  问题2:建立基于25个指标的平衡风险评估体系,评估老年人的平衡能力。给出相应的建议。

  问题3:根据提供的实际数据,对身体平衡力进行模拟计算和比较分析。为平衡能力较弱的老年人提供有效的建议。

  附件说明:

  附件1:《老年人基本数据》(格式:.xlsx)包含所有老年受试者的基本数据。

  附件2:附件2包含每个受试者在自由行走状态下的校准原始数据。有三个完整的gait(文件后缀:.trc),可以用Excel打开。第一列是帧序列,第二列是时间。从第三列开始,每三列代表监测点的运动坐标(x,y,z)。共有42个监测点。

整体求解过程概述(摘要)

  跌倒会造成成吨的伤害,这将影响老年人的生活水平。因此,结合步行时的身体姿势等因素,为他们建立一个平衡能力评估体系具有重要意义。

  我们的模型首先采用R型聚类方法和马氏距离从42个监测点中提取出25个具有医学意义的指标。我们的25项指标包含90.86%的全身特征信息,可靠性高。这一结果使测量每个受试者的基本身体状况成为可能。

  然后,基于这25个指标,采用改进的多项式曲线拟合方法建立了一个平衡能力体系,并将稳定配速曲线与实验配速曲线进行了比较,以塑造一个人的平衡能力。然后,我们的研究将我们的结果与实际跌倒时间进行了比较,对于所有有跌倒风险的老年人来说,准确率达到了近80%。然而,当应用于中等风险的老年人时,准确性会迅速下降。由于这种现象,我们的模型做了更多的改进。

  在我们改进的评估系统中,我们的模型考虑了TOPSIS的实际数据。我们使用来自实际数据的7个参数和附录2的追踪数据来衡量老年人的平衡能力。与实际跌倒时间相比,我们在几乎所有老年人中获得了80%的准确率。此外,我们改进的评估可以从整体上划分出平衡能力高和平衡能力低的老年人。

  改进模型的敏感性分析表明,模型中年龄和BMI参数的微小变化对结果的影响较小。3%的干扰只会影响2.5%的排名,5%的干扰会影响7.5%的排名。最后,我们从医学角度对不同类型的跌倒或平衡能力低下的老年人提出了不同的建议。

模型假设:

  1.记录跟踪数据时没有时间差。
  2.25个指标具有医学意义和物理意义,能够预测重心等物理参数。
  3.跟踪数据能够预测平衡能力。由于我们的R-TYPE CLUSTER算法、PCA算法都是基于实际数据的。
  4.追踪数据是每个受试者的正常步骤,即每个人在实验室里都像平时一样行走,尤其是在摔倒前。
  5.在长者跌倒和被追踪的这些年里,身体没有发生大的变化。

问题重述:

  背景
  在过去的几十年里,我国的老龄化程度逐渐加快。预计到2050年,60岁以上人口将占总人口的33%。这些年来,老年人摔倒事故也在大规模增加。当老年人跌倒时,他们会不稳定,失去平衡,对老年人来说,下半身肌肉衰退会导致平衡能力下降,不足以支撑老年人在跌倒时下半身;同时,由于老年人神经系统控制能力下降,神经传导减慢,运动反应时间延长,也会导致老年人在跌倒时不能及时调整身体保持平衡。这样,就有必要衡量老年人的平衡能力,为他们提供适当的建议,让他们保持平衡,更加注意他们的平衡。
  此外,对老年人平衡能力的预测研究较少。此外,大多使用单个传感器,检测精度有限,容易误判。

  问题重述
  建立一个模型,其中包含来自给定42个监测点的25个主要指标。该模型需要用于分析每个受试者的步数、重心、速度和加速度等。

  根据实际实验数据,建立一个能够评估老年人平衡能力的模型。

  模拟那些几年前摔倒的老年人,并向我们的模型证明我们的模型是否能够监测他们的平衡能力。

  为那些平衡能力较弱的老年人提供建议。

模型的建立与求解整体论文缩略图

在这里插入图片描述
在这里插入图片描述

全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

程序代码:

部分程序如下:
%% import dataresultvar_yy=[];resultvar_zz=[];A = dir(fullfile('*.trc'));
for iiii=1:1:76data1=load(A(iiii).name);result_yy=[];result_zz=[]; resultfit_yy=[];resultfit_zz=[]; data2=data1(:,3:end);%matrix1*126 for i=1:1:25%rowyy=[];zz=[];for ii=2:1:5%columnif data3(i,ii)~=0yy=[yy,data2(:,3*data3(i,ii)-1)];zz=[zz,data2(:,3*data3(i,ii))];endendresult_yy=[result_yy,mean(yy,2)];result_zz=[result_zz,mean(zz,2)];yytofit=result_yy(:,i);zztofit=result_zz(:,i);% Create the model.fun = @(x,xdata)x(1)+x(2)*xdata+x(3)*(xdata).^2+x(4)*(xdata).^3 +x(5)*
(xdata).^4 +x(6)*(xdata).^5+x(7)*(xdata).^6+x(8)*(xdata).^7;tdata =data1(:,2);m0 = 1.0e+04 *[0.0280 0.1155 -0.6000 1.1672 -1.1046 
0.5433 -0.1334 0.0129];% Solve the bounded fitting problem.my1 = lsqcurvefit(fun,m0,tdata,yytofit);my2 = lsqcurvefit(fun,my1,tdata,yytofit);yyfitted=fun(my2,tdata);mz1 = lsqcurvefit(fun,m0,tdata,zztofit);mz2 = lsqcurvefit(fun,mz1,tdata,zztofit);
zzfitted=fun(mz2,tdata);resultfit_yy=[resultfit_yy,yyfitted];resultfit_zz=[resultfit_zz,zzfitted]; difference_yy=abs(resultfit_yy-result_yy);difference_zz=abs(resultfit_zz-result_zz);var_yy=var(difference_yy,0,1);var_zz=var(difference_zz,0,1);endresultvar_yy=[resultvar_yy;var_yy];resultvar_zz=[resultvar_zz;var_zz];
end
%%CLUSTER
clc, clear all
%read in circle
A = dir(fullfile('*.trc'));
resultfinal=[];
for i=1:1:2data1=load(A(i).name);[m,n]=size(data1);a=[]; for ii=1:1:42X=[data1(:,3*ii+1),data1(:,3*ii+2)];a(:,ii)=pdist(X,'mahal');end%%b=zscore(a); %standard the datar=corrcoef(b); %coefficient matrixd=pdist(b','correlation'); %计算相关系数导出的距离z=linkage(d,'average'); %按类平均法聚类figureh=dendrogram(z); %画聚类图set(h,'Color','k','LineWidth',1.3) %把聚类图线的颜色改成黑色,线宽加粗
T=cluster(z,'maxclust',25); %cluster into 25 catagoryresults= [];for iii=1:25tm=find(T==iii); %find the ith coatogory’s subjetcttm=reshape(tm,1,length(tm)); %in row 
results=[results;tm,zeros(1,15-length(tm))];end resultfinal=[resultfinal;results];end
%% topsis
clc, clear
data=load('datatopsis.txt');
[m,n]=size(data);
fun=@(qujian,lb,ub,x)(1-(qujian(1)-x)./(qujian(1)-lb)).*(x>=lb & 
x<qujian(1))+(x>=qujian(1) & x<=qujian(2))+(1-(x-qujian(2))./(ubqujian(2))).*(x>qujian(2) & x<=ub);
%properties trans
qj2=[0.41,0.48]; lb2=0.35; ub2=0.52;
data(:,2)=fun(qj2,lb2,ub2,data(:,2));
qj3=[2.5,5]; lb3=2; ub3=5.8;
data(:,3)=fun(qj3,lb3,ub3,data(:,3));
qj6=[19,28]; lb6=17; ub6=32;
data(:,6)=fun(qj6,lb6,ub6,data(:,6));
for j=1:nb(:,j)=data(:,j)/norm(data(:,j)); % normalize the matrix
end
%% weight
% data analysis in 1
maxdata=repmat(max(data),m,1);
mindata=repmat(min(data),m,1);
max_min=maxdata-mindata;
stddata=(data-mindata)./max_min;
%calculatee the weight
f=(1+stddata)./repmat(sum(1+stddata),m,1);
e=-1/log(m)*sum(f.*log(f));
d=1-e;
w=d/sum(d); % 权重向量
%%
c=b.*repmat(w,m,1); %求加权矩阵
Cstar=max(c) %求正理想解
Cstar(1)=min(c(:,1)); Cstar(4)=min(c(:,4)); 
Cstar(5)=min(c(:,5)); 
Cstar(7)=max(c(:,7)); %属性 1,3,5,6 为成本型, 属性 2 为效益型
C0=min(c) %q 求负理想解
C0(1)=max(c(:,1)); C0(4)=max(c(:,4)); 
C0(5)=max(c(:,5)); 
C0(7)=min(c(:,7)); %属性 1,3,5,6 为成本型, 属性 8 为效益型
for i=1:mSstar(i)=norm(c(i,:)-Cstar); %求到正理想解的距离S0(i)=norm(c(i,:)-C0); %求到负理想的距离
end
f=S0./(Sstar+S0);
[sf,ind]=sort(f,'descend'); %求排序结果
Y=[ind',sf'];
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/169432.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ESP32C3 LuatOS TM1650①驱动测试

合宙TM1650驱动资料 TM1650.lua源码 引脚连接 TM1650ESP32C3SCLGPIO5SDAGPIO4 下载TM1650.lua源码&#xff0c;并以文件形式保存在项目文件夹中 驱动测试源码 --注意:因使用了sys.wait()所有api需要在协程中使用 -- 用法实例 PROJECT "ESP32C3_TM1650" VERSION …

数据结构:选择题+编程题(每日一练)

目录 选择题&#xff1a; 题一&#xff1a; 题二&#xff1a; 题三&#xff1a; 题四&#xff1a; 题五&#xff1a; 编程题&#xff1a; 题一&#xff1a;单值二叉树 思路一&#xff1a; 题二&#xff1a;二叉树的最大深度 思路一&#xff1a; 本人实力有限可能对…

KekeBlog项目实战后台模块(二)(已完结)

十一、后台模块-菜单列表 菜单指的是权限菜单&#xff0c;也就是一堆权限字符串 1. 查询菜单 1.1 接口分析 需要展示菜单列表&#xff0c;不需要分页。可以针对菜单名进行模糊查询。也可以针对菜单的状态进行查询。菜单要按照父菜单id和orderNum进行排序 请求方式 请求路径…

【QT开发(10)】QT 进程

文章目录 1.1 运行一个新进程1.2 QProcess 还可以对一些信号进行关联2 进程间通信2.1 使用共享内存实现进程通信2.2 演示 代码仓库参考 1.1 运行一个新进程 使用类 QProcess&#xff0c;允许将一个进程堪称一个顺序IO设备。 在Qt中&#xff0c;QProcess类是用于启动外部进程的…

Vue的MVVM实现原理

目录 前言 用法 代码和效果图 效果图 理解 高质量的使用 前言 MVVM是Model-View-ViewModel的缩写&#xff0c;是一种软件架构设计模式。Vue.js实现了这种设计模式&#xff0c;通过双向数据绑定和虚拟DOM技术&#xff0c;使得数据和视图能够快速响应彼此的变化。了解Vue的…

unity中方向的两种表示:欧拉角和四元数

欧拉角&#xff1a;简单来说就是你可以选择 0度~360度 的范围 四元数&#xff1a;在计算机图像学中&#xff0c;四元数用于物体的旋转&#xff0c;是一种复杂&#xff0c;但效率较高的旋转方式 Quaternion结构体代表一个四元数&#xff0c;包含一个标量和一个三维向量&#x…

C# Onnx Yolov8 Detect 路面坑洼检测

效果 项目 代码 using Microsoft.ML.OnnxRuntime; using Microsoft.ML.OnnxRuntime.Tensors; using OpenCvSharp; using System; using System.Collections.Generic; using System.Drawing; using System.Linq; using System.Text; using System.Windows.Forms;namespace Onnx…

leetcode 105. 从前序与中序遍历序列构造二叉树

2023.10.21 本题需要根据前序遍历序列和中序遍历序列来构造出一颗二叉树。类似于从中序与后序遍历序列构造二叉树 。使用递归&#xff0c; java代码如下&#xff1a; /*** Definition for a binary tree node.* public class TreeNode {* int val;* TreeNode left;* …

Monocular arbitrary moving object discovery and segmentation 论文阅读

基本信息 题目&#xff1a;Monocular Arbitrary Moving Object Discovery and Segmentation 作者&#xff1a; 来源&#xff1a;BMVC 时间&#xff1a;2021 代码地址&#xff1a;https://github.com/michalneoral/Raptor Abstract 我们提出了一种发现和分割场景中独立移动的…

VSCode 自动格式化

1.打开应用商店&#xff0c;搜索 prettier code formatter &#xff0c;选择第一个&#xff0c;点击安装。 2.安装完成后&#xff0c;点击文件&#xff0c;选择首选项&#xff0c;选择设置。 3.在搜索框内输入 save &#xff0c;勾选在保存时格式化文件。 4.随便打开一个文件&a…

nginx配置负载均衡--实战项目(适用于轮询、加权轮询、ip_hash)

&#x1f468;‍&#x1f393;博主简介 &#x1f3c5;云计算领域优质创作者   &#x1f3c5;华为云开发者社区专家博主   &#x1f3c5;阿里云开发者社区专家博主 &#x1f48a;交流社区&#xff1a;运维交流社区 欢迎大家的加入&#xff01; &#x1f40b; 希望大家多多支…

021-Qt 配置GitHub Copilot

Qt 配置GitHub Copilot 文章目录 Qt 配置GitHub Copilot项目介绍 GitHub Copilot配置 GitHub CopilotQt 前置条件升级QtGitHub Copilot 前置条件激活的了GitHub Copilot账号安装 Neovim 启用插件&#xff0c;重启Qt配置 GitHub Copilo安装Nodejs下载[copilot.vim](https://gith…

http post协议实现简单的rpc协议,WireShark抓包分析

文章目录 1.http 客户端-RPC客户端1.http 服务端-RPC服务端3.WireShark抓包分析3.1客户端到服务端的HTTP/JSON报文3.2服务端到客户端的HTTP/JSON报文 1.http 客户端-RPC客户端 import json import requests# 定义 RPC 客户端类 class RPCClient:def __init__(self, server_url…

基于多尺度分形残差注意力网络的超分辨率重建算法

1.引言 深度神经网络可以显著提高超分辨率的质量&#xff0c;但现有方法难以充分利用低分辨率尺度特征和通道信息&#xff0c;从而阻碍了卷积神经网络的表达能力。针对此类问题&#xff0c;本章提出了一种多尺度分形残差注意力网络&#xff08;Multi-scale Fractal Residual A…

Java NIO

Java NIO 一&#xff0c;介绍 Java NIO&#xff08;New IO&#xff09;是 JDK 1.4 引入的一组新的 I/O API&#xff0c;用于支持非阻塞式 I/O 操作。相比传统的 Java IO API&#xff0c;NIO 提供了更快、更灵活的 I/O 操作方式&#xff0c;可以用于构建高性能网络应用程序。 …

系统设计 - 我们如何通俗的理解那些技术的运行原理 - 第八部分:Linux、安全

本心、输入输出、结果 文章目录 系统设计 - 我们如何通俗的理解那些技术的运行原理 - 第八部分&#xff1a;Linux、安全前言Linux 文件系统解释应该知道的 18 个最常用的 Linux 命令HTTPS如何工作&#xff1f;数据是如何加密和解密的&#xff1f;为什么HTTPS在数据传输过程中会…

领导:给你一个项目,如何开展性能测试工作。我:***

01 怎么开展性能测试 01 测试的一般步骤 性能测试的工作是基于系统功能已经完备或者已经趋于完备之上的&#xff0c;在功能还不够完备的情况下没有多大的意义&#xff08;后期功能完善上会对系统的性能有影响&#xff0c;过早进入性能测试会出现测试结果不准确、浪费测试资源…

ESRI ArcGIS Desktop 10.8.2图文安装教程及下载

ArcGIS 是由美国著名的地理信息系统公司 Esri 开发的一款地理信息系统软件&#xff0c;它是目前全球最流行的 GIS 软件之一。ArcGIS 提供了图形化用户界面和数据分析工具&#xff0c;可以帮助用户管理、分析和可视化各种空间数据。ArcGIS Desktop是一个完整的桌面GIS软件套件&a…

20231024后端研发面经整理

1.如何在单链表O(1)删除节点&#xff1f; 狸猫换太子 2.redis中的key如何找到对应的内存位置&#xff1f; 哈希碰撞的话用链表存 3.线性探测哈希法的插入&#xff0c;查找和删除 插入&#xff1a;一个个挨着后面找&#xff0c;知道有空位 查找&#xff1a;一个个挨着后面找…

Ai写作创作系统ChatGPT网站源码+图文搭建教程+支持GPT4.0+支持ai绘画(Midjourney)/支持OpenAI GPT全模型+国内AI全模型

一、AI创作系统 SparkAi创作系统是基于OpenAI很火的ChatGPT进行开发的Ai智能问答系统AI绘画系统&#xff0c;支持OpenAI GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美&#xff0c;可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭建部署…