支持向量机(SVM)

一. 什么是SVM

1. 简介

SVM,曾经是一个特别火爆的概念。它的中文名:支持向量机(Support Vector Machine, 简称SVM)。因为它红极一时,所以关于它的资料特别多,而且杂乱。虽然如此,只要把握住SVM的一些特点,至少可以做到思路清晰。

(1)首先,SVM是按照监督类学习方式进行运作的。即:数据当中含有目标值。

(2)SVM采用监督学习方式,对数据进行二分类(这点跟逻辑回归一样)。但是,SVM和逻辑回归(LR)有有很多不同点。我们先看看相同点:

  • 二者都是线性分类器
  • 二者都是监督学习算法
  • 都属于判别模型(KNN, SVM, LR都属于判别模型),所谓判别模型就是指:通过决策函数,判别各个样本之间的差别来进行分类。

不同点就很多了,现在先列举一些,LR之前已经介绍过,关于SVM的具体理论先放到后面

  • 二者的损失函数和目标函数不一样。

  • 二者对数据和参数的敏感度不同。SVM由于采用了类似于“过度边界”的方式,泛化能力更好

SVM可以作线性分类器,但是在引入核函数(Kernel Method)之后,也可以进行非线性分类 

2.SVM分类

SVM大体上可分为:

  • 线性可分SVM:大体就是指一条线,把样本分成两份这种,我们会先从这个入手,这个相关理论懂了,后面的就会很简单
  • 线性SVM
  • 非线性SVM(需要核函数的支持)

二. 详细介绍

1. 线性可分SVM

1.1 支撑点,支撑向量

这个将作为重点来理解,这个相关理论知道了,那么,剩下的就很好理解,首先,我们先看一张图,然后我们根据这张图引出两个概念:支撑点,支撑向量。

 图一

我们看看图上面的三条线,首先,这是个二维平面,因此分割线可以表示成线性函数的形式:

关于w,它其实是一个权值向量,它可以表示成如下的形式,至于说为什么能够这么表示,我们一会儿再说。

在上图中,两个虚线之间,我们可以当做一个“过度区域”,在虚线上面,有一个蓝色的点,和两个红色的点正好位于虚线上面。对于这3个样本,我们标号1,2,3。我们大可以让alpha1,alpha2, alpha3不为0,其他的点alpha都是0。为什么可以这么做呢?因为边界的划定,也就是虚线,只受这三个边界点的影响(即:影响w向量)我们在现实中直接调整这三个边界点的alpha值,就可以确定界限。那么这三个点,我们就可以称他们为:**支撑点 **
如果你确定了一个起始点,那么起始点到各个点之间可以组成向量,这个起始点到支撑点之间就可以组成一个个:支撑向量

1.2 分割超平面与间隔最大化

首先,我们得知道什么是超平面?一般来说,二维就可以组成一个平面,那么如果是多维的呢?一般把超过二维的,就叫做超平面。由于超平面本身超出了一般人的认知,所以我们在理解分割超平面的时候,还是以最简单的二维平面入手,然后进行扩展。

在了解了什么是超平面之后,我们看这样一个图:

在这幅图中,我们看到了如此多的分割线,这些分割线都成功的把黑点和白点给区分开了。即:都把类别给分对了。那么,哪条线才是最优的呢?(如何分割超平面,就是解决这个问题)

我们就直接在二维空间一个基本问题入手:点到直线的距离入手。

我们假设有这么一条线:

再给定一个点(x0, y0)那么这个点到直线的距离就是: 

然后我们在此基础上直接把分子的绝对值给去掉,去掉之后,运算结果就会有正负之分了,通过正负,可以判断这个点在这条直线的哪一侧。然后各个项给拆开如下:

我们令各项系数分别记为:A’, B’ C’。然后整个公式就可以写成向量相乘的形式:

我们直接把(A’,B’)记为wi向量,将后面的(x0,y0)记为x向量 C’可以记为b,于是就得到了上述式子。

在这个例子当中,只是给了一个二维平面,实际情况下,有可能是多维的。此时w向量也是多维的,可以记为w = (w1,w2,w3……wn),其中这里的w1, w2对应的就是上面式子当中的A, B。我们再回过头看点到直线距离公式,看看那个分母。大致就可以猜出来一件事情:在多维空间中一个点到一个线的距离是:

此时,我们再看看图一。注意,图一两条虚线线等号后面分别是+1,-1,为啥是这个呢?

假设我划分了一个线,那么显然,每一个点到这个线都会有一个距离,按照上面这个式子,求出来的距离是带有符号的,这个时候就体现出这个1,-1的价值。这个1,-1,也是y(i)值。如果,求出的是正的,那么乘以1,就是距离本身,如果d为负值,那么乘以-1,又转回正的,还是距离。这就是为什么真正的距离会写成

那么,我所有点,都跟这个直线求一个距离,最后取一个最小值。

我跟所有的直线,都做上面这个操作,就会得到若干个这样的最小值,然后我取最小值最大的那个直线,就是最优解。即:

对于这个方式,有一个很直观的名字:间隔最大化

以上就是对分割超平面的一种直观的解释的一个解释。如果扩展到多维,即:超平面,很多时候,我们就不能用单纯一个x向量来解释了。其实,二维当中y与x是线性关系,也是一种映射关系。在多维平面当中,这种映射往往比较复杂,因此,扩展之后,我们会把间隔最大化的线写成如下形式:

其中,φ(x)是某个确定的特征空间转换函数,它的作用是将x映射到(更高的)维度。而在最简单的二维平面中φ(x)=x

由于在线性可分SVM是用来做分类问题,最基本的就是用来做二分类问题,所以,还要把上面这个式子映射到一个只有两个取值的函数当中,这就是线性可分SVM的决策函数:

1.3 线性可分SVM的目标函数以及相关算法

我们在图一当中,知道,虚线部分的y值取1,或者-1。但实际上,支撑点可不一定满足这个条件,类似的例子,可以举出无数个。因此,对于目标函数的构建,我们首先就要考虑一个问题:缩放。

根据题设,我们有一个间隔最大化的函数:

我们要让y(x)满足这个条件:

 

我们对w和b进行等比缩放,就得到了(回过头看看公式(一)): 

于是,把这个与公式二结合起来看,我们就得到了目标函数:

缩放的理论知道了,我们下一步,就是想,怎么能让那个y值是1。对于分类来说,就是让各个类别的点,尽量远离过渡区域,也就是说,这些点离分割线的距离要大于或者等于1,这样才达到分类目的,如下图所示:那个margin大于1,分类才越准确。

用符号表示就是:

通过等比例缩放w的方法,使得两类点的函数值都满足| y |≥1

然后,我们把间隔函数代入:

 

(公式三)

那么,我们就可继续用拉格朗日乘数法进行求解,然后,就求出了alpha*

1.4 线性可分SVM的简单举例

2.线性SVM

2.1 为什么需要线性SVM

在实际运用当中,首先,即使数据是线性可分的。通过线性可分SVM得到的分离超平面也不一定就是最适合的。比如说下面这个图:

如果按照分割超平面理论,实线应该属于最优的。但是,虚线部分,过渡带比较宽,所以他的泛化能力更好,可以更大可能的避免过拟合。

其次,如果数据根本就不是线性可分(即:线性不可分)的呢?你根本无法通过一条线或面就分的很明白呢?这就是为什么,我们要考虑:线性支持SVM

所谓线性不可分,就是指:一个数据集不可以通过一个线性分类器(直线、平面)来实现分类。这样子的数据集在实际应用中是很常见的,例如:人脸图像、文本文档等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/171132.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

bug:Chrome插件SwitchyOmega安装时程序包无效:“CRX_HEADER_INVALID“问题

bug:Chrome插件SwitchyOmega安装时程序包无效:“CRX_HEADER_INVALID“问题 1 解决 先说解决办法: 将下载的crx重命名为xxx.zip,然后解压打开chrome的开发者模式 点击加载已解压的应用程序,然后选择我们解压后的文件夹即可 安装成…

【linux】安装rpmrebuild

rpmrebuild是一种从已经安装的包中构建RPM文件的工具。它可以用于轻松构建修改后的包,并适用于任何使用RPM的Linux发行版。 访问地址 rpm rebuild download | SourceForge.net 选择版本 版本地址:版本地址 下载安装包 安装 rpm -ivh rpmrebuild-2.15…

简单8位CPU设计verilog微处理器,源码/视频

名称:8位CPU设计微处理器 软件:QuartusII 语言:Verilog 代码功能: 设计一个简单的处理器,可以实现加减法以及简单的逻辑运算。 设计包括程序计数器电路,指令存储器电路,指令译码器电路(控制器…

数字化转型系列主题:数据中台知识体系

当前,大部分企业不再建设从源数据采集到分析应用的烟囱式系统,更倾向于数据集中采集、存储,并应用分层建设。这种方式一方面有利于应用系统的快速部署,另一方面也保证了数据的集中管理与运营,体现数据的资产、资源属性…

异常---

目录 认识异常 自定义异常 认识异常 1.异常是什么? 2.异常的代表是谁?分为几类? Error :代表的系统级别错误(属于严重问题),也就是说系统一旦出现问题, s u n 公司会把…

Unsatisfied dependency expressed through bean property ‘sqlSessionTemplate‘;

代码没有问题,但是启动运行报错 2023-10-25 16:59:38.165 INFO 228964 --- [ main] c.h.h.HailiaowenanApplication : Starting HailiaowenanApplication on ganluhua with PID 228964 (D:\ganluhua\code\java\hailiao-java\target\classes …

<多线程章节十> 定时器的使用方法以及定时器的模拟实现

文章目录 💐专栏导读💡Java标准库中的定时器类💡模拟实现定时器 💐专栏导读 本篇文章收录于多线程,也欢迎翻阅博主的其他文章,可能也会让你有不一样的收获😄 🍂JavaSE🌷多…

36基于matlab的对分解层数和惩罚因子进行优化

基于matlab的对分解层数和惩罚因子进行优化。蚁狮优化算法优化VMD,算术优化算法优化VMD,遗传优化算法优化VMD,灰狼优化算法优化VMD,海洋捕食者优化算法优化VMD,粒子群优化VMD,麻雀优化算法优化VMD,鲸鱼优化…

将安全作为首要目标 — Venus 的现状和前景展望

DeFi 的全面爆发将上一轮牛市推向巅峰。在不断的演化中,DeFi 领域也产生了很多新兴的细分领域,比如收益聚合器、合成资产、各种 DeFi 收益工具,以及最近整个市场都在讨论的 RWA 等。 DeFi 在不断进化,不变的是,DEX 和借…

Ocelot简易教程目录

Ocelot简易教程目录 这里写目录标题 Ocelot简易教程目录 Ocelot简易教程(一)之Ocelot是什么Ocelot简易教程(二)之快速开始1Ocelot简易教程(二)之快速开始2Ocelot简易教程(三)之主要特…

Makefile 基础教程:从零开始学习

在软件开发过程中,Makefile是一个非常重要的工具,它可以帮助我们自动构建程序,管理程序依赖关系,提高开发效率。本篇博客将从基础开始,介绍Makefile的相关知识,帮助大家快速掌握Makefile的使用方法 Makefil…

C#使用mysql-connector-net驱动连接mariadb报错

给树莓派用最新的官方OS重刷了一下,并且用apt install mariadb-server装上“mysql”作为我的测试服务器。然后神奇的事情发生了,之前用得好好的程序突然就报错了,经过排查,发现在连接数据库的Open阶段就报错了。写了个最单纯的Con…

应用案例|基于三维机器视觉的机器人引导电动汽车充电头自动插拔应用方案

Part.1 项目背景 人类对减少温室气体排放、提高能源效率以及减少对化石燃料的依赖,加速了电动汽车的普及,然而,电动汽车的充电依然面临一些挑战。传统的电动汽车充电通常需要人工干预,插入和拔出充电头,这不仅可能导致…

学会Docker之——界面化操作(Docker Desktop)

Docker Desktop 是一款用于在桌面环境下开发、构建和容器化应用程序的工具。它适用于 Windows 和 Mac 操作系统,让开发人员可以轻松地在本地环境中创建和运行容器,并与 Docker Hub 和其他容器注册表进行交互。Docker Desktop集成了Docker Engine&#xf…

Dataworks API:调取 MC 项目下所有表单

文章目录 前言Dataworks API 文档解读GetMetaDBTableList 接口文档 API 调试在线调试本地调试运行环境账密问题请求数据进一步处理 小结 前言 最近,我需要对公司的数据资产进行梳理,这其中便包括了Dataworks各个项目下的表单。这些表单,作为…

js中的Formdata数据结构

这里写目录标题 一、基本概念二、常用方法1.append(name, value)、set(name, value)2.get()、getAll()3.has(name)4.delete(name)5.keys(),values(),entries() 三、其他细节1.for of遍历2.转为对象3.结合 URLSearchParams 转为queryString 一、基本概念 FormData 提供了一种表…

【软考系统架构设计师】2023年系统架构师冲刺模拟习题之《软件工程》

在软考中软件工程模块主要包含以下考点: 文章目录 软件过程模型🌟🌟🌟🌟逆向工程🌟基于构件的软件工程🌟🌟软件开发与软件设计与维护净室软件工程软件模型软件需求 软件过程模型&am…

learning rate

这里写目录标题 learning rate单一固定(one-size-fits-all)的学习率Model训练到驻点很困难(学习率太大不能收敛,学习率太小收敛太慢) 如何客制化学习率?- 引入参数σσ常见的计算方式 - Root mean square&a…

P1868 饥饿的奶牛

根据题意可以知道是一个动态规划,看完数据范围之后可以知道是一个线性DP。 解决方法有点类似于背包问题,枚举背包的每一个空间。 如果把坐标轴上每个点都看成一个块儿,只需要按顺序求出前 i 个块儿的最大牧草堆数,f[i] 就是前i的…

【wespeaker】模型ECAPA_TDNN介绍

本次主要介绍开源项目wespeaker模型介绍 1. 模型超参数 model_args: feat_dim: 80 embed_dim: 192 pooling_func: “ASTP” projection_args: project_type: “softmax” # add_margin, arc_margin, sphere, softmax scale: 32.0 easy_margin: False 2. 模型结构 2.1 Layer…