LLM系列 | 22 : Code Llama实战(下篇):本地部署、量化及GPT-4对比

  • 引言

  • 模型简介

  • 依赖安装

  • 模型inference

    • 代码补全

    • 4-bit版模型

    • 代码填充

    • 指令编码

  • Code Llama vs ChatGPT vs GPT4

  • 小结

引言

青山隐隐水迢迢,秋尽江南草未凋。

小伙伴们好,我是《小窗幽记机器学习》的小编:卖热干面的小女孩。紧接前文:

今天这篇小作文作为代码大语言模型Code Llama的下篇,主要介绍如何在本地部署Code Llama,同时介绍如何对Code Llama做模型量化。最后,对比Code Llama、ChatGPT和GTP4这三者的代码生成效果。

模型简介

官方发布了3类Code Llama模型,每类都有三种模型尺寸:

  • Code Llama:Base模型(即常说的基座模型),为通用的代码生成和理解而设计。

  • Code Llama - Python:专门为Python而设计。

  • Code Llama - Instruct:遵循指令,更加安全,可以作为代码助手。

三者关系如下:

依赖安装

pip3 install git+https://github.com/huggingface/transformers.git@main accelerate -i https://mirrors.cloud.tencent.com/pypi/simple

transformers版本:Version: 4.33.0.dev0

本文以下实验代码的获取,请前往《小窗幽记机器学习》找小编获取。

模型inference

代码补全

测试代码补齐功能的代码如下:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time    : 2023/9/4 20:07
# @Author  : 卖秋裤的小女孩
# @File    : inference_code_llama_hf.py
# @联系方式  : 微信公众号<小窗幽记机器学习>from transformers import AutoTokenizer
import transformers
import torch
"""
测试代码补全能力
"""
model_path = "/home/model_zoo/LLM/llama2/CodeLlama-34b-Python-hf/"
tokenizer = AutoTokenizer.from_pretrained(model_path)
pipeline = transformers.pipeline("text-generation",model=model_path,torch_dtype=torch.float16,device_map="auto",
)sequences = pipeline('def fibonacci(',do_sample=True,temperature=0.2,top_p=0.9,num_return_sequences=1,eos_token_id=tokenizer.eos_token_id,max_length=512,
)
for seq in sequences:print(f"Result: {seq['generated_text']}")

以上使用34B的模型做代码补齐能力测试,如果将模型置于一张A100(40G)上做inference,显存基本打满:

经过「漫长」的等待,终于「输出结果:」

Result: def fibonacci(n):if n == 0:return 0elif n == 1:return 1else:return fibonacci(n-1) + fibonacci(n-2)def fibonacci_iterative(n):if n == 0:return 0elif n == 1:return 1else:a = 0b = 1for i in range(2, n+1):c = a + ba = bb = creturn bdef fibonacci_iterative_2(n):if n == 0:return 0elif n == 1:return 1else:a = 0b = 1for i in range(2, n+1):c = a + ba = bb = creturn cdef fibonacci_iterative_3(n):if n == 0:return 0elif n == 1:return 1else:a = 0b = 1for i in range(2, n+1):c = a + ba = bb = creturn adef fibonacci_iterative_4(n):if n == 0:return 0elif n == 1:return 1else:a = 0b = 1for i in range(2, n+1):c = a + ba = bb = creturn adef fibonacci_iterative_5(n):if n == 0:return 0elif n == 1:return 1else:a = 0b = 1for i in range(2, n+1):c = a + ba = bb = creturn a

如果用2张A100(40G)加载模型做inference,能够相对较快返回结果。所以,对于34B版模型,建议先做量化,再用多块A100的做inference。

4-bit版模型

Transformers中已集成Code Llama,因此可以直接使用Transformers加载4-bit模型。这使得在消费级的nvidia 3090卡上运行大型的32B参数模型变得可能!以下演示如何在4-bit模式下进行推理的方法:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time    : 2023/9/4 21:01
# @Author  : 卖秋裤的小女孩
# @联系方式  : 微信公众号<小窗幽记机器学习>
# @File    : inference_code_llama_34B_4bit.pyfrom transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import torchmodel_id = "/home/model_zoo/LLM/llama2/CodeLlama-34b-Python-hf/"
# model_id = "codellama/CodeLlama-34b-hf"
quantization_config = BitsAndBytesConfig(load_in_4bit=True,bnb_4bit_compute_dtype=torch.float16
)tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id,quantization_config=quantization_config,device_map="auto",
)prompt = 'def remove_non_ascii(s: str) -> str:\n    """ '
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")output = model.generate(inputs["input_ids"],max_new_tokens=512,do_sample=True,top_p=0.9,temperature=0.1,
)
output = output[0].to("cpu")
print(tokenizer.decode(output))

inference期间显卡占用情况:

「输出结果如下:」

<s> def remove_non_ascii(s: str) -> str:"""Remove non-ascii characters from a string"""return "".join(c for c in s if ord(c) < 128)def clean_string(s: str) -> str:"""Clean a string by removing non-ascii characters and then removingany extra whitespace"""s = remove_non_ascii(s)s = s.strip()return s
</s>

鉴于inference速度问题,后续试验选用7B大小的模型。

代码填充

这是一个针对代码模型的特殊任务。在该任务下,模型为现有前缀和后缀的代码(包括注释)生成最佳匹配的代码。这是代码助手通常使用的策略:根据出现在光标前后的内容,填充当前的光标位置的内容。这个任务只能在「7B和13B模型的基座模型和指令微调模型」中使用。代码填充任务「不适用于34B版模型或Python版模型」。如果想要使用代码填充功能,需要注意训练模型的格式,因为它使用特殊的分隔符来识别提示的不同部分。可以直接使用transformers的CodeLlamaTokenizer。在底层,tokenizer会自动通过<FILL_ME>进行分割,以创建一个符合原始训练模式的格式化输入字符串。具体代码如下:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time    : 2023/9/4 19:25
# @Author  : 卖秋裤的小女孩
# @联系方式  : 微信公众号<小窗幽记机器学习>
# @File    : inference_code_infilling_hf.pyfrom transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
import torch# model_id = "/home/model_zoo/LLM/llama2/CodeLlama-7b-Python-hf"  # 代码填充任务不适用于Python版模型
model_id = "/home/model_zoo/LLM/llama2/CodeLlama-7b-Instruct-hf"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model_config = AutoConfig.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id,config=model_config,torch_dtype=torch.float16
).to("cuda")prompt = '''def remove_non_ascii(s: str) -> str:""" <FILL_ME>return result
'''input_ids = tokenizer(prompt, return_tensors="pt")["input_ids"].to("cuda")
output = model.generate(input_ids,max_new_tokens=512,
)
output = output[0].to("cpu")filling = tokenizer.decode(output[input_ids.shape[1]:], skip_special_tokens=True)
print(prompt.replace("<FILL_ME>", filling))

输出结果如下:

def remove_non_ascii(s: str) -> str:  """ Remove non-ASCII characters from a string.  Args:    s (str): The string to remove non-ASCII characters from.  Returns:    str: The string with non-ASCII characters removed.  """  result = ""  for c in s:    if ord(c) < 128:      result += c  return resultdef remove_non_ascii_and_spaces(s: str) -> str:  """ Remove non-ASCII and space characters from a string.  Args:    s (str): The string to remove non-ASCII and space characters from.  Returns:    str: The string with non-ASCII and space characters removed.  """  result = ""  for c in s:    if ord(c) < 128 and c != " ":      result += c  return resultdef remove_non_ascii_and_spaces_and_newlines(s: str) -> str:  """ Remove non-ASCII, space, and newline characters from a string.  Args:    s (str): The string to remove non-ASCII, space, and newline characters from.  Returns:    str: The string with non-ASCII, space, and newline characters removed.  """  result = ""  for c in s:    if ord(c) < 128 and c not in ["\n", "\r", "\t", " "]:      result += c  return resultdef remove_non_ascii_and_spaces_and_newlines_and_punctuation(s: str) -> str:  """ Remove non-ASCII, space, newline, and punctuation characters from a string.  Args:    s (str): The string to remove non-ASCII, space, newline, and punctuation characters from.  Returns:    str: The string with non-ASCII, space, newline, and punctuation characters removed.  """  result = ""  for c in s:    if ord(c) < 128 and c not in ["\  return result

如果在上述代码中强行使用CodeLlama-7b-Python-hf模型做代码填充任务,模型inference的时候可能报错:

RuntimeError: CUDA error: CUBLAS_STATUS_NOT_INITIALIZED when calling `cublasCreate(handle)`

指令编码

如前面所述基座模型可以用于代码补全和填充,Code Llama还发布了一个经过指令微调的模型,可用于对话式编程。 针对这个任务,需要使用llama2中的提示模板,具体可以参考之前的文章:Llama 2实战(上篇):本地部署(附代码) :

<s>[INST] <<SYS>>
{{ system_prompt }}
<</SYS>>{{ user_msg_1 }} [/INST] {{ model_answer_1 }} </s><s>[INST] {{ user_msg_2 }} [/INST]

注意,系统提示是可选的,在没有它的情况下模型可以正常工作,但我们可以使用系统提示system_prompt来进一步配置模型的行为或风格。例如,总是希望得到JavaScript的代码答案,可以在这里指定。在系统提示之后,需要提供历史对话:用户询问的问题和模型的回答。与代码填充案例一样,需要注意使用分隔符。输入的最后一个组成必须始终是一个新的用户指令,这是模型提供答案的信号。以下代码片段演示了在实践中模板的工作方式。

  1. 没有system prompt的用户query

user = 'I have a pandas DataFrame df['text'], how can I directly add a list of data test_list to df['text'] to increase the number of rows?'prompt = f"<s>[INST] {user.strip()} [/INST]"
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda")

「完整示例代码:」

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time    : 2023/9/5 20:49
# @Author  : 卖猪脚饭的小女孩
# @联系方式  : 微信公众号<小窗幽记机器学习>
# @File    : inference_code_instructions_hf_v2.py
"""
测试  instruction 版模型
CUDA_VISIBLE_DEVICES=2 python3 inference_code_instructions_hf_v2.py
"""
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfigmodel_id = "/home/model_zoo/LLM/llama2/CodeLlama-7b-Instruct-hf/"
# model_id = "codellama/CodeLlama-34b-hf"
# device_map="auto",
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id,
).to("cuda")user_query = "I have a pandas DataFrame df['text'], how can I directly add a list of data test_list to df['text'] to increase the number of rows?"prompt = f"<s>[INST] {user_query.strip()} [/INST]"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")output = model.generate(inputs["input_ids"],max_new_tokens=512,do_sample=True,top_p=0.9,temperature=0.1,
)
output = output[0].to("cpu")
print(tokenizer.decode(output))

输出结果如下:

<s><s> [INST] I have a pandas DataFrame df['text'], how can I directly add a list of data test_list to df['text'] to increase the number of rows? [/INST]  You can use the `append` method to add a list of data to a pandas DataFrame. Here's an example:```import pandas as pd# create a sample DataFramedf = pd.DataFrame({'text': ['hello', 'world']})# create a list of data to addtest_list = ['foo', 'bar', 'baz']# add the list to the DataFramedf['text'] = df['text'].append(test_list)print(df)```This will output:```   text0  hello1  world2  foo3  bar4  baz```Note that the `append` method returns a new DataFrame with the added data, so you need to assign the result back to the original DataFrame.Alternatively, you can use the `concat` function to concatenate the DataFrame with the list of data:```import pandas as pd# create a sample DataFramedf = pd.DataFrame({'text': ['hello', 'world']})# create a list of data to addtest_list = ['foo', 'bar', 'baz']# concatenate the DataFrame with the list of datadf = pd.concat([df, pd.DataFrame({'text': test_list})])print(df)```This will output the same result as the previous example.</s>

可以看出,输出了2种代码。 第一种:

import pandas as pd# create a sample DataFrame
df = pd.DataFrame({'text': ['hello', 'world']})# create a list of data to add
test_list = ['foo', 'bar', 'baz']# add the list to the DataFrame
df['text'] = df['text'].append(test_list)print(df)

第一种代码写法无法正常运行。

第二种:

import pandas as pd# create a sample DataFrame
df = pd.DataFrame({'text': ['hello', 'world']})# create a list of data to add
test_list = ['foo', 'bar', 'baz']# concatenate the DataFrame with the list of data
df = pd.concat([df, pd.DataFrame({'text': test_list})])print(df)

经过测试,第二种写法可以正常运行,且结果符合预期。

所以,简单的代码需求,CodeLlama-7b-Instruct-hf表现一般,可能存在一些比较明显的坑。

进一步尝试使用34B版模型:CodeLlama-34b-Instruct-hf,生成代码如下:

import pandas as pd# create a sample DataFrame with a 'text' column
df = pd.DataFrame({'text': ['hello', 'world', 'this', 'is', 'a', 'test']})# create a list of data to add to the 'text' column
test_list = ['new', 'data', 'to', 'add']# concatenate the 'text' column with the test_list
df['text'] = pd.concat([df['text'], test_list])print(df)

上述代码直接运行会报错:

TypeError: cannot concatenate object of type '<class 'list'>'; only Series and DataFrame objs are valid
  1. 带system prompt的用户query

system = "Provide answers in C++"
user = "Write a function that computes the set of sums of all contiguous sublists of a given list."prompt = f"<s><<SYS>>\\n{system}\\n<</SYS>>\\n\\n{user}"
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda")
  1. 带历史对话的持续对话

system = "System prompt"
user_1 = "user_prompt_1"
answer_1 = "answer_1"
user_2 = "user_prompt_2"
answer_2 = "answer_2"
user_3 = "user_prompt_3"prompt  = f"<<SYS>>\\n{system}\\n<</SYS>>\\n\\n{user_1}"
prompt  = f"<s>[INST] {prompt.strip()} [/INST] {answer_1.strip()} </s>"
prompt += f"<s>[INST] {user_2.strip()} [/INST] {answer_2.strip()} </s>"
prompt += f"<s>[INST] {user_3.strip()} [/INST]"inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda")

ChatGPT vs GPT4

延续上述指令编程中的panda行方向数据扩增这一代码需求,在ChatGPT和GPT4上对比测试。由于ChatGPT和GPT4都支持中文输入,所以直接使用中文Promp输入:

我有一个pandas数据 df['text'],如何将一个list数据test_list直接添加到df['text']中,使得行数变多

「ChatGPT生成结果如下:」

import pandas as pd# 原始数据
df = pd.DataFrame({'text': ['hello', 'world']})# 要添加的数据
test_list = ['foo', 'bar']# 将test_list作为一个新的DataFrame对象添加到原始DataFrame对象中
new_df = df.append(pd.DataFrame({'text': test_list}), ignore_index=True)# 打印结果
print(new_df)

ChatGPT生成代码运行结果如下:

   text
0  hello
1  world
2    foo
3    bar

「GPT4生成结果如下:」

# 假设这是你的原始DataFrame
import pandas as pd
df = pd.DataFrame({'text': ['hello', 'world']})# 这是你要添加的list
test_list = ['foo', 'bar']# 将list转换为DataFrame
new_df = pd.DataFrame({'text': test_list})# 使用append方法将新的DataFrame添加到原来的DataFrame中
df = df.append(new_df, ignore_index=True)print(df)

GPT4生成代码运行结果如下:

    text
0  hello
1  world
2    foo
3    bar

可以看出,对于简单的代码需求,ChatGPT和GPT4都cover住。

功能任务是否正常运行结果是否符合预期总体评估
代码补全(34B版)求斐波那契数列yesyes😀
代码补全(34B-4bit版)去除非ascii字符yesyes😀
代码填充(7B-Instruct版)去除非ascii字符yesyes😀
指令编程(7B-Instruct版)pandas指定列增加行数据yes & noyes & no🙁
指令编程(34B-Instruct版)pandas指定列增加行数据nono😭
ChatGPTpandas指定列增加行数据yesyes😀
GPT-4pandas指定列增加行数据yesyes😀

小结

在普通代码需求上,现阶段的Code Llama模型仍然有一些明显的瑕疵,实战效果仍不如ChatGPT和GPT4。相信Code Llama后续的发展及其成长可以进一步趋近当下的ChatGPT和GPT4。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/171337.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

记录--vue3实现excel文件预览和打印

这里给大家分享我在网上总结出来的一些知识&#xff0c;希望对大家有所帮助 前言 在前端开发中&#xff0c;有时候一些业务场景中&#xff0c;我们有需求要去实现excel的预览和打印功能&#xff0c;本文在vue3中如何实现Excel文件的预览和打印。 预览excel 关于实现excel文档在…

android——自定义控件(编辑框)、悬浮窗

一、自定义编辑框 效果图&#xff1a; 主要的代码为&#xff1a; class EditLayout JvmOverloads constructor(context: Context, attrs: AttributeSet? null, defStyleAttr: Int 0 ) : ConstraintLayout(context, attrs, defStyleAttr) {private var editTitle: Stringpr…

五、W5100S/W5500+RP2040树莓派Pico<UDP Client数据回环测试>

文章目录 1. 前言2. 协议简介2.1 简述2.2 优点2.3 应用 3. WIZnet以太网芯片4. UDP Client回环测试4.1 程序流程图4.2 测试准备4.3 连接方式4.4 相关代码4.5 测试现象 5. 注意事项6. 相关链接 1. 前言 UDP是一种无连接的网络协议&#xff0c;它提供了一种简单的、不可靠的方式来…

线框图软件:Balsamiq Wireframes mac中文介绍

Balsamiq Wireframes mac是一款用于创建线框图的软件工具。它旨在帮助用户快速制作出清晰、简洁的界面原型&#xff0c;以便在设计和开发过程中进行协作和沟通。 Balsamiq Wireframes具有简单直观的用户界面&#xff0c;使用户能够快速添加和编辑各种用户界面元素&#xff0c;如…

Java采集传感器数据,亲测有效!

背景 先说背景&#xff0c; 最近公司项目需要用到传感器&#xff0c;采集设备温湿度&#xff0c;倾斜角&#xff0c;电流…&#xff0c;公司采购采购了一个温湿度传感器给我们开发测试使用&#xff0c;如下图&#xff1a; 看着还挺精致有没有。 进入正题 有了这个温湿度传感器…

Spring | Spring Cache 缓存框架

Spring Cache 缓存框架&#xff1a; Spring Cache功能介绍Spring Cache的Maven依赖Spring Cache的常用注解EnableCaching注解CachePut注解Cacheable注解CacheEvict注解 Spring Cache功能介绍 Spring Cache是Spring的一个框架&#xff0c;实现了基于注解的缓存功能。只需简单加一…

ubuntu 22.04安装百度网盘

百度网盘 客户端下载 (baidu.com) 下载地址 sudo dpkg -i baidunetdisk_4.17.7_amd64.deb

高防CDN:保卫您的网站免受攻击之利与弊

在当今数字化时代&#xff0c;网络安全对于网站经营者至关重要。高防CDN&#xff08;Content Delivery Network&#xff09;技术旨在提供强大的安全性&#xff0c;以保护网站免受恶意攻击。本文将探讨高防CDN为普通网站带来的优势与不足之处&#xff0c;并分析国内外高防CDN的发…

谷歌真的不喜欢 Node.js ?

有人在 Quora 上提问&#xff0c;为什么谷歌不喜欢 Node.js 呢&#xff0c;Google 的 UX 工程师和来自 Node.js 团队的开发者分别回答了他们对这个问题的看法&#xff0c;对于编程语言来说&#xff0c;每一门语言都有它自己的优势&#xff0c;重要的是如何用它去解决问题。 谷…

SpringBoot集成Redis主从架构实现读写分离(哨兵模式)

一、前言 这里会使用到spring-boot-starter-data-redis包&#xff0c;spring boot 2的spring-boot-starter-data-redis中&#xff0c;默认使用的是lettuce作为redis客户端&#xff0c;也推荐使用lettuce&#xff0c;Redis使用哨兵集群&#xff0c;这里会通过lettuce连接到哨兵…

Flume基本使用--mysql数据输出

MySQL数据输出 在MySQL中建立数据库school&#xff0c;在数据库中建立表student。SQL语句如下&#xff1a; create database school; use school; create table student(id int not null,name varchar(40),age int,grade int,primary key(id) ); 请使用Flume实时捕…

1. 两数之和、Leetcode的Python实现

博客主页&#xff1a;&#x1f3c6;看看是李XX还是李歘歘 &#x1f3c6; &#x1f33a;每天分享一些包括但不限于计算机基础、算法等相关的知识点&#x1f33a; &#x1f497;点关注不迷路&#xff0c;总有一些&#x1f4d6;知识点&#x1f4d6;是你想要的&#x1f497; ⛽️今…

【Elasticsearch】es脚本编程使用详解

目录 一、es脚本语言介绍 1.1 什么是es脚本 1.2 es脚本支持的语言 1.3 es脚本语言特点 1.4 es脚本使用场景 二、环境准备 2.1 docker搭建es过程 2.1.1 拉取es镜像 2.1.2 启动容器 2.1.3 配置es参数 2.1.4 重启es容器并访问 2.2 docker搭建kibana过程 2.2.1 拉取ki…

Kafka - 深入了解Kafka基础架构:Kafka的基本概念

文章目录 Kafka的基本概念 Kafka的基本概念 我们首先了解一些Kafka的基本概念。 1&#xff09;Producer &#xff1a;消息生产者&#xff0c;就是向kafka broker发消息的客户端2&#xff09;Consumer &#xff1a;消息消费者&#xff0c;向kafka broker获取消息的客户端3&…

【代码随想录】算法训练计划03

1、203. 移除链表元素 题目&#xff1a; 给你一个链表的头节点 head 和一个整数 val &#xff0c;请你删除链表中所有满足 Node.val val 的节点&#xff0c;并返回 新的头节点 。 输入&#xff1a;head [1,2,6,3,4,5,6], val 6 输出&#xff1a;[1,2,3,4,5] 思路&#xf…

hdlbits系列verilog解答(模块按名字)-22

文章目录 一、问题描述二、verilog源码三、仿真结果 一、问题描述 此问题类似于模块。您将获得一个名为的 mod_a 模块&#xff0c;该模块按某种顺序具有 2 个输出和 4 个输入。您必须按名称将 6 个端口连接到顶级模块的端口&#xff1a; module mod_a ( output out1, output …

DVWA-Cross Site Request Forgery (CSRF)

大部分网站都会要求用户登录后,使用相应的权限在网页中进行操作,比如发邮件、购物或者转账等都是基于特定用户权限的操作。浏览器会短期或长期地记住用户的登录信息,但是,如果这个登录信息被恶意利用呢?就有可能发生CSRF CSRF的英文全称为Cross Site Request Forgery,中文…

如何通过内网穿透实现公网远程连接Redis数据库

公网远程连接Redis数据库【内网穿透】 文章目录 公网远程连接Redis数据库【内网穿透】前言1. Linux(centos8)安装redis数据库2. 配置redis数据库3. 内网穿透3.1 安装cpolar内网穿透3.2 创建隧道映射本地端口 4. 配置固定TCP端口地址4.1 保留一个固定tcp地址4.2 配置固定TCP地址…

Docker Swarm 节点维护

Docker Swarm Mode Docker Swarm 集群搭建 Docker Swarm 节点维护 Docker Service 创建 1.角色转换 Swarm 集群中节点的角色只有 manager 与 worker&#xff0c;所以其角色也只是在 manager 与worker 间的转换。即 worker 升级为 manager&#xff0c;或 manager 降级为 worke…

深眸科技以需求定制AI视觉解决方案,全面赋能产品外观缺陷检测

产品外观是影响产品质量最重要的因素之一&#xff0c;其平整度、有无瑕疵等不仅影响到产品美观&#xff0c;甚至能够直接影响产品本身的使用和后续加工&#xff0c;给企业带来重大经济损失。 随着人工智能技术的快速发展&#xff0c;机器视觉与AI技术的结合应用加速渗透进工业…