Mysql进阶-索引篇(上)

目录

索引概述

 索引结构

数据结构

二叉树

 红黑树

 B-Tree

 B+Tree

 Hash

 索引分类

聚集索引&二级索引

聚集索引选取规则:

 具体结构

索引基础语法

 SQL性能分析

SQL执行频率

慢查询日志 

profile详情

explain



索引概述

介绍:

索引( index )是帮助 MySQL 高效获取数据的数据结构 ( 有序 ) 。在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据, 这样就可以在这些数据结构上 实现高级查找算法 ,这种数据结构就是索引。可以简单理解为我们先排好特定的顺序再查找,查找速度会大大提高
演示:
表结构及其数据

 假如我们要执行的SQL语句为 : select * from user where age = 45;

  • 无索引情况

相当于全表扫描,从第一行扫描到末尾,遇到满足条件的数据,仍会继续遍历下去,进而扫描全表,这相当于数组的遍历,时间复杂度很高,性能很差

  • 有索引情况
如果我们针对于这张表建立了索引, 假设索引结构就是二叉树 ,那么也就意味着,会对 age 这个字段建立一个二叉树的索引结构。即左子树的age值<根节点<右子树, 可将数据范围划分为两个范围 ,变成类似二分查找的查找算法, 极大提高搜索效率,而不用全局遍历。 下图只需要比较三次就可以得到45

 特点:

  • 优势
提高 数据检索的效率 ,降低数据库的IO 成本
通过索引列对数据进行排序,降低数据排序的成本, 降低CPU的消耗(不用频繁低性能的查询数据)
  • 劣势                                       

索引列也是要占用空间的

索引大大提高了查询效率,同时却也 降低更新表的速度 ,如对表进行INSERT UPDATE DELETE 时,效率降低,因为 更新表的同时也要更新索引

 索引结构

MySQL的索引是在存储引擎层实现的,不同的存储引擎有不同的索引结构, MySQL 所支持的所有的索引结构 主要包含以下几种:

不同的存储引擎对于索引结构的支持情况, 我们平常所说的索引,如果没有特别指明,都是指B+树结构组织的索引。

数据结构

二叉树

MySQL 的索引结构采用二叉树的数据结构,比较理想的结构如下:
但如果主键是顺序插入的,那 二叉树就会退化为单向链表,每次检索时都要遍历链表,检索效率大大降低

选择二叉树作为索引结构,会存在以下缺点:
顺序插入时,会形成一个链表,查询性能大大降低
大数据量情况下,层级较深,检索速度慢

 红黑树

由于二叉树会一直加深层级,我们可以想到红黑树作为自平衡的二叉树,能很好弥补这一缺点,那这样即使是顺序插入数据,最终形成的数据结构也是一颗平衡的二叉树,但由于红黑树也是一颗二叉树,也会出现层级较深的问题结构如下:

 B-Tree

B-Tree,B树是一种多叉路衡查找树,相对于二叉树,B树每个节点可以有多个分支,即多叉。 以一颗最大度数(max-degree)为5(5阶)的b-tree为例,那这个B树每个节点最多存储4个key,5 个指针,比二叉树多了三个key,可以多走三个分支,即五个范围。树的度数就是一个节点的子节点的个数

 

 进入b树的可视化演示网站,可以帮助我们理解b树的演变过程,这里选用的五阶b树B-Tree Visualization

 插入900时,由于每个节点只能存储四个key,此时会进行裂变,将插入900之后,五个元素进行排序之后,选取中间元素作为父节点,以中间元素为分界线,分割为两个节点

 

 特点:

  • 5阶的B树,每一个节点最多存储4个key,对应5个指针。
  • 一旦节点存储的key数量到达5,就会裂变,中间元素向上分裂。
  • 在B树中,非叶子节点和叶子节点都会存放数据。

 B+Tree

B+Tree是B-Tree的变种,我们以一颗最大度数(max-degree)为4(4阶)的b+tree为例,来看一 下其结构示意图

绿色框框起来的部分,是索引部分,仅仅起到索引数据的作用,不存储数据

红色框框起来的部分,是数据存储部分,在其叶子节点中要存储具体的数据

 插入元素达到裂变的同时,叶子节点之间会形成一个单向链表,注意是传统的b+树就是形成单向链表

 B+Tree 与 B-Tree相比,主要有以下三点区别:

所有的数据都会出现在叶子节点。

叶子节点形成一个单向链表。

非叶子节点仅仅起到索引数据作用,具体的数据都是在叶子节点存放的。

 MySQL索引数据结构对经典的B+Tree进行了优化。在原B+Tree的基础上,增加一个指向相邻叶子节点的链表指针,即是双向链表,这就形成了带有顺序指针的B+Tree,提高区间访问的性能,利于排序。

 Hash

MySQL中除了支持B+Tree索引,还支持一种索引类型---Hash索引。

结构:

哈希索引就是采用一定的hash算法,将键值换算成新的hash值,映射到对应的槽位上,然后存储在 hash表中,如果有哈希冲突,就会形成一个单向链表,挂在槽位之后,类似于hashtable

 哈希冲突的情况

 特点:

A. Hash索引只能用于对等比较(=,in),不支持范围查询(between,>,< ,...)

B. 无法利用索引完成排序操作

C. 查询效率高,通常(不存在hash冲突的情况)只需要一次检索就可以了,效率通常要高于B+tree索引

 索引分类

MySQL 数据库,将索引的具体类型主要分为以下几类:主键索引、唯一索引、常规索引、全文索引。
分类含义特点关键字
主键索引
针对于表中主键创建的索引
默认自动创建 , 只能
有一个 ,因为 主键只能有
一个
PRIMARY
唯一索引
避免同一个表中某数据列中的值重复
可以有多个
UNIQUE
常规索引
快速定位特定数据,(例如手机验证码登录时,用手机号查询用户,这一场景下就可以定义手机号为常规索引)
可以有多个
全文索引
全文索引查找的是文本中的关键词,而不是比较索引中的值
可以有多个
FULLTEXT

聚集索引&二级索引

 在InnoDB存储引擎中,根据索引的存储形式,又可以分为以下两种:

分类含义特点
聚集索引 (ClusteredIndex)
将数据存储与索引放到了一块,索引结构的叶子节点保存了行数据
必须有 , 而且只
有一个
二级索引 (Secondary Index)
将数据与索引分开存储,索引结构的叶子节点 关联的是对应的主键, 而对应的主键索引就会指向真正的行数据
可以存在多个

聚集索引选取规则:

总之聚集索引是必须要有的,如果没有主键索引,就会采用唯一索引,如果二者都没有,就会随机生成

  • 如果存在主键,主键索引就是聚集索引
  • 如果不存在主键,将使用第一个唯一(UNIQUE)索引作为聚集索引
  • 如果表没有主键,或没有合适的唯一索引,则InnoDB自动生成一个rowid作为隐藏的聚集索引。

 具体结构

聚集索引的叶子节点下挂的是这一行的具体数据 , 相当于一级指针,直接指向数据本身
二级索引的叶子节点下挂的是该字段值对应的主键值,即指向了聚集索引, 相当于二级指针

当我们用name这个二级索引查询数据时,具体的执行流程为:

. 由于是根据 name 字段进行查询,所以先根据 name='Arm' name 字段的 二级索引中进行匹配查找 。但是在二级索引中只能查找到 Arm 对应的主键值 10
. 由于查询返回的数据是 所有的行数据 ,所以此时,还需要根据主键值 10,到聚集索引中查找10 对应的记录,最终找到10 对应的行 row
. 最终拿到这一行的数据,直接返回即可。

 这一流程也称为回表查询

先到二级索引中查找数据,找到主键值,然后再到聚集索引中根据主键值,获取
数据的方式,就称之为回表查询。

索引基础语法

创建索引

CREATE [ UNIQUE | FULLTEXT ] INDEX index_name ON table_name ( index_col_name,... ) ;

 查看索引

SHOW INDEX FROM table_name ;

 删除索引

DROP INDEX index_name ON table_name ;

 创建一张表 tb_user,并且查询测试数据。

需求如下:

A.name字段为姓名字段,该字段的值可能会重复,为该字段创建索引

create index idx_user_name on tb_user(name)

 B.phone手机号字段的值,是非空,且唯一的,为该字段创建唯一索引。

create unique index idx_user_phone on tb_user(phone);

 C.为profession、age、status创建联合索引。

create index idx_user_pro_age_sta on tb_user(profession,age,status)

 D.为email建立合适的索引来提升查询效率。

create index idx_user_email on tb_user(email);

 查看建立的索引,索引的命名规范应为idx_表名_列名

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/171700.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JetBrains ReSharper Ultimate 2023.2.2

JetBrains ReSharper Ultimate 国外知名软件公司JetBrains专为软件开发软件编程人员制作的各类应用工具箱&#xff0c;如&#xff1b;PHP集成开发工具PHPStorm&#xff0c;Java整合开发工具IntelliJ IDEA&#xff0c;Python集成开发工具PyCharm&#xff0c;HTML/CSS/JS开发工具…

17 HAP 覆盖特性与链路损耗特性分析

HAP 覆盖特性与链路损耗特性分析 HAP平台高度&#xff1a;17~22km之间。HAP通信业务的覆盖区域取决于覆盖区边缘至平台的仰角&#xff0c;仰角越小&#xff0c;覆盖区域越大。覆盖区内不同地点的用户至平台的距离差别也越大。HAP和终端几何关系&#xff1a; B&#xff1a;地面…

Spring Boot 使用 Disruptor 做内部高性能消息队列

这里写自定义目录标题 一 、背景二 、Disruptor介绍三 、Disruptor 的核心概念3.1 Ring Buffer3.2 Sequence Disruptor3.3 Sequencer3.4 Sequence Barrier3.5 Wait Strategy3.6 Event3.7 EventProcessor3.8 EventHandler3.9 Producer 四、案例-demo五、总结 一 、背景 工作中遇…

手把手带你申请软著!助你提高通过率!!!

文章目录 背景证书图片注意事项杜绝雷同抄袭准备材料1、功能需求说明书2、项目源码3、身份证原件复印件4、软著的申请表格 申请软著准备及步骤撰写材料说明说样式源码文件样式&#xff1a; 提交材料审核材料下证 背景 之前也有开发一下小软件&#xff0c;但是没有意识到软著&a…

【杂记】Ubuntu20.04装系统,安装CUDA等

装20.04系统 安装系统的过程中&#xff0c;ROG的B660G主板&#xff0c;即使不关掉Secure boot也是可以的&#xff0c;不会影响正常安装&#xff0c;我这边出现问题的主要原因是使用了Ventoy制作的系统安装盘&#xff0c;导致每次一选择使用U盘的UEFI启动&#xff0c;就会跳回到…

【产品经理】APP备案(阿里云)

工信部《关于开展移动互联网应用程序备案工作的通知》 工业和信息化部印发了《关于开展移动互联网应用程序备案工作的通知》&#xff0c;“在中华人民共和国境内从事互联网信息服务的App主办者&#xff0c;应当依照相关法律法规等规定履行备案手续&#xff0c;未履行备案手续的…

PHP如何批量修改二维数组中值

每个name值加pex&#xff0c;age加5&#xff0c; 原数据&#xff1a; $data[["name">a,age>12],["name">b,age>22],["name">c,age>33],["name">d,age>44], ];实现效果 方案一、foreach引用方式 $data[["…

ubuntu 22.04 截图工具 shutter

sudo apt install shutter 快捷键F1 注意不支持wayland&#xff0c;登录时不要选择ubuntu wayland

景联文科技提供4D-BEV标注工具:提升自动驾驶感知能力的精准数据支持

4D-BEV标注是一种用于自动驾驶领域的数据标注方法。在3D空间的基础上&#xff0c;加入了时间维度&#xff0c;形成了四个维度。这种方法通过精准地跟踪和记录动态对象&#xff08;如车辆、行人&#xff09;的运动轨迹、姿势变化以及速度等信息&#xff0c;全面理解和分析动态对…

CTF-Crypto学习记录-第四天 “ “ --- SHA1安全散列算法,实现原理。

文章目录 前言SHA-1加密算法介绍关于SHA-1和MD5 SHA-1 加密过程原文处理设置初始值和数据结构定义加密运算原理过程 在python中调用SHA-1 前言 MD5学习MD5加密算法 SHA-1加密算法介绍 SHA-1&#xff08;Secure Hash Algorithm1&#xff0c;安全散列算法1&#xff09;是一种密…

02【Git分支的使用、Git回退、还原】

上一篇&#xff1a;01【Git的基本命令、底层命令、命令原理】 下一篇&#xff1a;03【Git的协同开发、TortoiseGit、IDEA的操作Git】 文章目录 02【Git分支的使用、Git回退、还原】一、分支1.1 分支概述1.1.1 Git分支简介1.1.2 Git分支原理 1.2 创建分支1.2.1 创建普通分支1.…

OpenCV官方教程中文版 —— 模板匹配

OpenCV官方教程中文版 —— 模板匹配 前言一、原理二、OpenCV 中的模板匹配三、多对象的模板匹配 前言 在本节我们要学习&#xff1a; 使用模板匹配在一幅图像中查找目标 函数&#xff1a;cv2.matchTemplate()&#xff0c;cv2.minMaxLoc() 一、原理 模板匹配是用来在一副大…

蓝桥杯每日一题2032.10.24

蓝桥杯大赛历届真题 - C 语言 B 组 - 蓝桥云课 (lanqiao.cn) 题目描述 题目分析 由于布局为两个字节为一行&#xff0c;那我们输入两个数就为一行&#xff0c;但是这两个数全部得用二进制进行表示使用bitset bitset:将一个数转化为二进制 bitset<8>:将一个数转化为8位…

【机器学习可解释性】2.特征重要性排列

机器学习可解释性 1.模型洞察的价值2.特征重要性排列3.部分依赖图4.SHAP Value5.SHAP Value 高级使用 正文 前言 你的模型认为哪些特征最重要&#xff1f; 介绍 我们可能会对模型提出的最基本的问题之一是&#xff1a;哪些特征对预测的影响最大&#xff1f; 这个概念被称为…

环形链表-力扣

一、题目描述 题目链接&#xff1a;力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 二、题解 解题思路&#xff1a; 快慢指针&#xff0c;即慢指针一次走一步&#xff0c;快指针一次走两步&#xff0c;两个指针从链表起始位置开始运行&#xff0c;…

[RISC-V]verilog

小明教IC-1天学会verilog(7)_哔哩哔哩_bilibili task不可综合&#xff0c;function可以综合

电脑监控软件哪些比较好用

电脑监控软件在当今信息化时代越来越受到人们的关注&#xff0c;它们可以用于保护公司的商业机密&#xff0c;防止员工在工作中做一些不恰当的事情&#xff0c;以及在家庭中监控孩子的上网行为等。 本文将介绍一些比较好用的电脑监控软件&#xff1a; 一、域之盾软件 这款软件…

基于springboot实现网吧管理系统项目【项目源码+论文说明】计算机毕业设计

基于springboot实现网吧管理系统演示 摘要 随着信息技术和网络技术的飞速发展&#xff0c;人类已进入全新信息化时代&#xff0c;传统管理技术已无法高效&#xff0c;便捷地管理信息。为了迎合时代需求&#xff0c;优化管理效率&#xff0c;各种各样的管理系统应运而生&#x…

ATV32变频器在堆垛机应用

一、机型介绍&#xff1a; 目前国内物流行业发展速度很快&#xff0c;特别是在自动仓库这一块&#xff0c;自动仓库用的最多是堆垛机&#xff0c;自动仓库目前驱动用得基本上变频器。品牌基本是丹佛斯、日系及其他等重载系列变频器。设备主要包括&#xff1a;提升机、货叉及行…

python:多波段遥感影像分离成单波段影像

作者:CSDN @ _养乐多_ 在遥感图像处理中,我们经常需要将多波段遥感影像拆分成多个单波段图像,以便进行各种分析和后续处理。本篇博客将介绍一个用Python编写的程序,该程序可以读取多波段遥感影像,将其拆分为单波段图像,并保存为单独的文件。本程序使用GDAL库来处理遥感影…