注意力机制、Transformer模型、生成式模型、目标检测算法、图神经网络、强化学习、深度学习模型可解释性与可视化方法等详解

采用“理论讲解+案例实战+动手实操+讨论互动”相结合的方式,抽丝剥茧、深入浅出讲解注意力机制、Transformer模型(BERT、GPT-1/2/3/3.5/4、DETR、ViT、Swin Transformer等)、生成式模型(变分自编码器VAE、生成式对抗网络GAN、扩散模型Diffusion Model等)、目标检测算法(R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SDD等)、图神经网络(GCN、GAT、GIN等)、强化学习(Q-Learning、DQN等)、深度学习模型可解释性与可视化方法(CAM、Grad-CAM、LIME、t-SNE等)的基本原理及Python代码实现方法。

【条件】:本教程为进阶学习,需要学员掌握卷积神经网络、循环神经网络等前序基础知识。同时,应具备一定的Python编程基础,熟悉numpy、pandas、matplotlib、scikit-learn、pytorch等第三方模块库。

【专家】:郁磊(副教授),主要从事Python/Matlab 编程、机器学习与深度学习、数据可视化、生理系统建模与仿真、生物医学信号处理,具有丰富的实战应用经验,主编《MATLAB智能算法30个案例分析》、《MATLAB神经网络43个案例分析》相关著作。已发表多篇高水平的国际学术研究论文。

专题一 注意力(Attention)机制详解

①注意力机制的背景和动机(为什么需要注意力机制?注意力机制的起源和发展)
②注意力机制的基本原理:用机器翻译任务带你了解Attention机制、如何计算注意力权重?
③注意力机制的一些变体(硬性注意力机制、软性注意力机制、键值对注意力机制、多头注意力机制、多头注意力机制、……)
④注意力机制的可解释性(如何使用注意力机制进行模型解释?注意力机制的可视化技术?)
⑤案例演示、实操练习

专题二 Transformer模型详解

①Transformer模型拓扑结构
②Transformer模型工作原理(为什么Transformer模型需要位置信息?位置编码的计算方法?Transformer模型的损失函数?)
③自然语言处理(NLP)领域的Transformer模型:BERT、GPT-1 / GPT-2 / GPT-3 / GPT-3.5 / GPT-4(模型的总体架构、输入和输出形式、预训练目标、预训练数据的选择和处理、词嵌入方法、GPT系列模型的改进与演化、……)。
④计算视觉(CV)领域的Transformer模型:DETR / ViT / Swin Transformer(DERT:基于Transformer的检测头设计、双向匹配损失;ViT:图像如何被分割为固定大小的patches?如何将图像patches线性嵌入到向量中?Transformer在处理图像上的作用?Swin:窗口化自注意力机制、层次化的Transformer结构、如何利用位移窗口实现长范围的依赖?)
⑤案例演示、实操练习

专题三 生成式模型详解

①变分自编码器VAE(自编码器的基本结构与工作原理、变分推断的基本概念及其与传统贝叶斯推断的区别、VAE的编码器和解码器结构及工作原理)
②生成式对抗网络GAN(GAN提出的背景和动机、GAN的拓扑结构和工作原理、生成器与判别器的角色、GAN的目标函数)
③扩散模型Diffusion Model(扩散模型的核心概念?如何使用随机过程模拟数据生成?扩散模型的工作原理)
④跨模态图像生成DALL.E(什么是跨模态学习?DALL.E模型的基本架构、模型训练过程)
⑤案例演示、实操练习

专题四 目标检测算法详解

①目标检测任务与图像分类识别任务的区别与联系
②两阶段(Two-stage)目标检测算法:R-CNN、Fast R-CNN、Faster R-CNN(RCNN的工作原理、Fast R-CNN和Faster R-CNN的改进之处 )
③一阶段(One-stage)目标检测算法:YOLO模型、SDD模型(拓扑结构及工作原理)
④案例演示、实操练习

专题五 图神经网络详解

①图神经网络的背景和基础知识(什么是图神经网络?图神经网络的发展历程?为什么需要图神经网络?)
②图的基本概念和表示(图的基本组成:节点、边、属性;图的表示方法:邻接矩阵;图的类型:无向图、有向图、加权图)
③图神经网络的工作原理(节点嵌入和特征传播、聚合邻居信息的方法、图神经网络的层次结构)
④图卷积网络(GCN)的工作原理
⑤图神经网络的变种和扩展:图注意力网络(GAT)、图同构网络(GIN)、图自编码器、图生成网络
⑥案例演示、实操练习

专题六 强化学习详解

①强化学习的基本概念和背景(什么是强化学习?强化学习与其他机器学习方法的区别?强化学习的应用领域有哪些?
②Q-Learning(马尔可夫决策过程、Q-Learning的核心概念、什么是Q函数?Q-Learning的基本更新规则)
③深度Q网络(DQN)(为什么传统Q-Learning在高维或连续的状态空间中不再适用?如何使用神经网络代替Q表来估计Q值?目标网络的作用及如何提高DQN的稳定性?)
④案例演示、实操练习

专题七 深度学习模型可解释性与可视化方法详解

①什么是模型可解释性?为什么需要对深度学习模型进行解释?
②可视化方法有哪些(特征图可视化、卷积核可视化、类别激活可视化等)?
③类激活映射CAM(Class Activation Mapping)、梯度类激活映射GRAD-CAM、局部可解释模型-敏感LIME(Local Interpretable Model-agnostic Explanation)、等方法原理讲解
④t-SNE的基本概念及使用t-SNE可视化深度学习模型的高维特征
⑤案例演示、实操练习

第八章 讨论与答疑


更多应用

包含:Python机器学习、数据挖掘、PyTorch机器学习、MATLAB机器学习、R语言【Tidyverse、Tidymodel】、地理加权回归、结构方程模型、贝叶斯网络模型、混合效应(多水平层次嵌套)模型、Copula变量相关性、极值统计学、分位数回归、网络爬虫、科研数据可视化、Nvivo、Citespace和vosviewer文献计量学、AI人工智能等...

★关 注【科研充电吧】公 众 号,获取海量教程和资源

带您了解ChatGPT强大功能!-CSDN博客文章浏览阅读144次。ChatGPT 在论文写作与编程方面也具备强大的能力。无论是进行代码生成、错误调试还是解决编程难题,ChatGPT都能为您提供实用且高质量的建议和指导,提高编程效率和准确性。此外,ChatGPT是一位出色的合作伙伴,可以为您提供论文写作的支持。它可以为您提供论文结构指导、段落重组建议,甚至是对论文内容的进一步拓展和丰富。利用ChatGPT的写作能力,您可以更好地组织思路、提升论文的逻辑性和质量。https://blog.csdn.net/WangYan2022/article/details/134031345?spm=1001.2014.3001.5502全面助力AI人工智能在科研、教学与实践技能_WangYan2022的博客-CSDN博客文章浏览阅读133次。在人工智能领域进行研究和深耕,将帮助您在茫茫职场的竞争人海中脱颖而出,登上未来科技巨变的最前沿,比他人更加敏锐、更加迅捷地抓住未来的动向https://blog.csdn.net/WangYan2022/article/details/131846581?spm=1001.2014.3001.5502基于R语言、MATLAB、Python机器学习方法与案例分析_r语言对hmdb51视频分类_WangYan2022的博客-CSDN博客文章浏览阅读3.1k次,点赞3次,收藏22次。机器学习已经成为继理论、实验和数值计算之后的科研“第四范式”,是发现新规律,总结和分析实验结果的利器。_r语言对hmdb51视频分类https://blog.csdn.net/WangYan2022/article/details/126655566?spm=1001.2014.3001.5502

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/171881.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

华为机试题:HJ3 明明的随机数

目录 第一章、算法题1.1)题目描述1.2)解题思路与答案1.3)牛客链接 友情提醒: 先看文章目录,大致了解文章知识点结构,点击文章目录可直接跳转到文章指定位置。 第一章、算法题 1.1)题目描述 题目描述&…

MySQL篇---第一篇

系列文章目录 文章目录 系列文章目录一、数据库的三范式是什么二、MySQL数据库引擎有哪些三、说说InnoDB与MyISAM的区别一、数据库的三范式是什么 第一范式:列不可再分 第二范式:行可以唯一区分,主键约束 第三范式:表的非主属性不能依赖与 其他表的非主属性 外键约束 且三…

单片机中的 _nop_() 延时以及其相关的基础扩展

使用 _nop_() 函数做延时遇到的一些问题 以及对此延伸出的一些需要了解的基本概念 ...... by 矜辰所致 完善文章内容结构,补充指令周期、机器周期等一些基本概念 2023/10/25前言 最近还是继续做着项目,因为在某 8051 内核芯片上使用到了 I…

聚焦AIGC落地,八仙过海,谁更神通?

【科技明说 | 重磅专题开篇】 从AI高谈阔论的概念, 到AI真金白银的投资,再到AI因ChatGPT大模型的升温,每一次技术带动产业的革新,都离不开不了两样东西的驱动。一是此起彼伏的技术迭代,二是不计后果的资本…

vue源码分析(四)——vue 挂载($mount)的详细过程

文章目录 前言一、使用RuntimeCompiler解析$mount的原因二、$mount 解析的详细过程1.解析挂载的#app执行了vm.$mount2. 通过$mount方法执行以下文件的mount方法3. 执行util工具文件夹中的query方法4. 执行query方法后返回$mount方法判断el是否是body5. 判断!options.render&…

树莓派 Qt中 QCameraInfo 无法使用

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、QCameraInfo 是什么?二、使用步骤1.测试代码2.解决方案2.1输入命令2.2输出 3. 成功打印了摄像头的信息 总结 前言 提示:这里可以添…

电脑技巧:Win10飞行模式相关知识介绍

目录 一、飞行模式简介 二、如何开关Windows 10中的飞行模式 方法一:使用硬件开关 方法二:使用Windows 10操作中心 方法三:使用Windows 10设置 三、飞行模式开关被卡住、变灰或不工作时怎么办 什么是 Windows 10 飞行模式? 用户如何打…

【机器学习可解释性】3.部分依赖图

机器学习可解释性 1.模型洞察的价值2.特征重要性排列3.部分依赖图4.SHAP Value5.SHAP Value 高级使用 正文 每个特征怎么样影响预测结果? 部分依赖图 Partial Dependence Plots 虽然特征重要性显示了哪些变量对预测影响最大,但部分依赖图显示了特征如…

大数据-Storm流式框架(五)---DRPC

DRPC 概念 分布式RPC(DRPC)背后的想法是使用Storm在运行中并行计算真正强大的函数。 Storm拓扑接收函数参数流作为输入,并为每个函数调用发送结果的输出流。 DRPC并不是Storm的一个特征,因为它基于Storm的spouts,bo…

【OpenCV实现平滑图像形态学变化】

文章目录 概要目标腐蚀膨胀开运算结构元素(内核)小结 概要 形态学变化是一组简单的图像操作,主要用于处理二值图像,即只包含黑和白两种颜色的图像。这些操作通常需要两个输入,原始图像和一个内核(kernel&a…

JVM进阶(3)

一)什么是垃圾? 垃圾指的是在应用程序中没有任何指针指向的对象,这个对象就是需要被回收的垃圾,如果不及时的针对内存中的垃圾进行清理,那么这些垃圾对象所占用的内存空间可能一直保留到应用程序结束,被保留的空间无法…

一文详解汽车电CAN总线

1.什么是CAN总线 CAN总线(控制器区域网络)是一个中央网络系统,连接不同的电子控制单元(ECU),车辆中的其他设备。现代汽车可以有100个ECU,因此CAN总线通信变得非常重要。 2.CAN总线流行的背景 集中式:CAN总线系统允许对连接到网络的ECU进行集…

前端移动web高级详细解析一

01-平面转换 简介 作用:为元素添加动态效果,一般与过渡配合使用 概念:改变盒子在平面内的形态(位移、旋转、缩放、倾斜) 平面转换也叫 2D 转换,属性是 transform 平移 transform: translate(X轴移动距…

Android开发知识学习——编码、加密、Hash、序列化和字符集

文章目录 学习资源来自:扔物线加密古代密码学现代密码学对称加密非对称加密密码学密钥和登录密码Base64URL 使用的百分号编码压缩与解压缩图片与音频、视频编解码 序列化Hash字符集课后题 学习资源来自:扔物线 加密 古代密码学 起源:古代战…

C/C++面试常见问题——const关键字的作用和用法

首先我们需要一下const关键字的定义,const名叫常量限定符,当const修饰变量时,就是在告诉编译器该变量只可访问不可修改,而编译器对于被const修饰的变量有一个优化,编译器不会专门为其开辟空间,而是将变量名…

Win10中Pro/E鼠标滚轮不能缩放该怎么办?

Pro/E安装好后,鼠标滚轮不能缩放模型,该怎么办?问题多发生在win8/win10上,新装了PROE,发现滑动鼠标中键不能放大缩小。 彩虹图纸管理软件_图纸管理系统_图纸文档管理软件系统_彩虹EDM【官网】彩虹EDM图纸管理软件系统…

Windows下安装Anaconda、Pycharm以及iflycode插件图解

目录 一、下载Anaconda、Pycharm以及iflycode插件 二、创建相关文件夹 三、Pycharm社区版安装详细步骤 四、Anaconda安装详细步骤 五、配置Pycharm 六、安装iflycode插件 Anaconda是一款集成的Python环境,anaconda可以看做Python的一个集成安装,安…

WebGL笔记:矩阵的变换之平移的实现

矩阵的变换 变换 变换有三种状态:平移、旋转、缩放。当我们变换一个图形时,实际上就是在移动这个图形的所有顶点。解释 webgl 要绘图的话,它是先定顶点的,就比如说我要画个三角形,那它会先把这三角形的三个顶点定出来…

云端代码编辑器Atheos

什么是 Atheos ? Atheos是一个基于 Web 的 IDE 框架,占用空间小且要求最低,构建于 Codiad 之上,不过 Atheos 已从原始 Codiad 项目完全重写,以利用更现代的工具、更简洁的代码和更广泛的功能。 注意事项 群晖内核版本太…

【计算机毕设小程序案例】基于微信小程序的图书馆座位预定系统

前言:我是IT源码社,从事计算机开发行业数年,专注Java领域,专业提供程序设计开发、源码分享、技术指导讲解、定制和毕业设计服务 👉IT源码社-SpringBoot优质案例推荐👈 👉IT源码社-小程序优质案例…