Pytorch从零开始实战07

Pytorch从零开始实战——咖啡豆识别

本系列来源于365天深度学习训练营

原作者K同学

文章目录

  • Pytorch从零开始实战——咖啡豆识别
    • 环境准备
    • 数据集
    • 模型选择
    • 训练
    • 模型可视化
    • 模型预测
    • 其他问题
    • 总结

环境准备

本文基于Jupyter notebook,使用Python3.8,Pytorch2.0.1+cu118,torchvision0.15.2,需读者自行配置好环境且有一些深度学习理论基础。本次实验的目的是手写VGG,并且测试多GPU。
第一步,导入常用包

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn.functional as F
import random
from time import time
import numpy as np
import pandas as pd
import datetime
import gc
import os
import copy
os.environ['KMP_DUPLICATE_LIB_OK']='True'  # 用于避免jupyter环境突然关闭
torch.backends.cudnn.benchmark=True  # 用于加速GPU运算的代码

设置随机数种子

torch.manual_seed(428)
torch.cuda.manual_seed(428)
torch.cuda.manual_seed_all(428)
random.seed(428)
np.random.seed(428)

创建设备对象,并且查看GPU数量

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device, torch.cuda.device_count()

数据集

本次使用的数据集是咖啡豆图片,它分为四个类别,Dark、Green、Light、Medium,一共有1200张图片,不同的类别存放在不同的文件夹中,文件夹名是类别名。
使用pathlib查看类别

import pathlib
data_dir = './data/beans'
data_dir = pathlib.Path(data_dir) # 转成pathlib.Path对象
data_paths = list(data_dir.glob('*')) 
classNames = [str(path).split("/")[2] for path in data_paths]
classNames # ['Dark', 'Green', 'Medium', 'Light']

使用transforms对数据集进行统一处理,并且根据文件夹名映射对应标签

train_transforms = transforms.Compose([transforms.Resize([224, 224]),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 标准化
])total_data = datasets.ImageFolder("./data/beans/", transform=train_transforms)
total_data.class_to_idx # {'Dark': 0, 'Green': 1, 'Light': 2, 'Medium': 3}

随机查看5张图片

def plotsample(data):fig, axs = plt.subplots(1, 5, figsize=(10, 10)) #建立子图for i in range(5):num = random.randint(0, len(data) - 1) #首先选取随机数,随机选取五次#抽取数据中对应的图像对象,make_grid函数可将任意格式的图像的通道数升为3,而不改变图像原始的数据#而展示图像用的imshow函数最常见的输入格式也是3通道npimg = torchvision.utils.make_grid(data[num][0]).numpy()nplabel = data[num][1] #提取标签 #将图像由(3, weight, height)转化为(weight, height, 3),并放入imshow函数中读取axs[i].imshow(np.transpose(npimg, (1, 2, 0))) axs[i].set_title(nplabel) #给每个子图加上标签axs[i].axis("off") #消除每个子图的坐标轴plotsample(total_data)

在这里插入图片描述
根据8比2划分数据集和测试集,并且利用DataLoader划分批次和随机打乱

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_ds, test_ds = torch.utils.data.random_split(total_data, [train_size, test_size])batch_size = 32
train_dl = torch.utils.data.DataLoader(train_ds,batch_size=batch_size,shuffle=True,)
test_dl = torch.utils.data.DataLoader(test_ds,batch_size=batch_size,shuffle=True,)len(train_dl.dataset), len(test_dl.dataset) # (960, 240)

模型选择

本次实验使用VGG16,模型如下
在这里插入图片描述

class Model(nn.Module):def __init__(self):super().__init__()self.block1 = nn.Sequential(nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.MaxPool2d(2))self.block2 = nn.Sequential(nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.MaxPool2d(2))self.block3 = nn.Sequential(nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.MaxPool2d(2))self.block4 = nn.Sequential(nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.MaxPool2d(2))self.block5 = nn.Sequential(nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),nn.ReLU(),nn.MaxPool2d(2))self.fc = nn.Sequential(nn.Linear(7 * 7 * 512, 4096),nn.ReLU(),nn.Linear(4096, 4096),nn.ReLU(),nn.Linear(4096, len(classNames)))def forward(self, x):x = self.block1(x)x = self.block2(x)x = self.block3(x)x = self.block4(x)x = self.block5(x)x = x.view(-1, 7 * 7 * 512)x = self.fc(x)return x

使用summary查看模型结构,并且将模型转成多GPU并行运算的模型

from torchsummary import summary
# 将模型转移到GPU中
model = Model()
model = model.to(device)
if torch.cuda.device_count() > 1:  # 检查电脑是否有多块GPUprint(f"Let's use {torch.cuda.device_count()} GPUs!")model = nn.DataParallel(model)  # 将模型对象转变为多GPU并行运算的模型summary(model, input_size=(3, 224, 224))

在这里插入图片描述

训练

定义训练函数

def train(dataloader, model, loss_fn, opt):size = len(dataloader.dataset)num_batches = len(dataloader)train_acc, train_loss = 0, 0for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X)loss = loss_fn(pred, y)opt.zero_grad()loss.backward()opt.step()train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

定义测试函数

def test(dataloader, model, loss_fn):size = len(dataloader.dataset)num_batches = len(dataloader)test_acc, test_loss = 0, 0with torch.no_grad():for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X)loss = loss_fn(pred, y)test_acc += (pred.argmax(1) == y).type(torch.float).sum().item()test_loss += loss.item()test_acc /= sizetest_loss /= num_batchesreturn test_acc, test_loss

定义损失函数、优化算法、学习率,本次使用的是Adam优化算法

loss_fn = nn.CrossEntropyLoss()
learn_rate = 0.0001
opt = torch.optim.Adam(model.parameters(), lr=learn_rate)

开始训练,准确率还是非常高的

import time
epochs = 30
train_loss = []
train_acc = []
test_loss = []
test_acc = []T1 = time.time()best_acc = 0
best_model = 0for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval() # 确保模型不会进行训练操作epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)if epoch_test_acc > best_acc:best_acc = epoch_test_accbest_model = copy.deepcopy(model)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)print("epoch:%d, train_acc:%.1f%%, train_loss:%.3f, test_acc:%.1f%%, test_loss:%.3f"% (epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))T2 = time.time()
print('程序运行时间:%s秒' % (T2 - T1))PATH = './best_model.pth'  # 保存的参数文件名
if best_model is not None:torch.save(best_model.state_dict(), PATH)print('保存最佳模型')
print("Done")

在这里插入图片描述

模型可视化

使用matplotlib可视化训练、测试过程

import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

模型预测

定义模型预测函数

from PIL import Image classes = list(total_data.class_to_idx)def predict_one_image(image_path, model, transform, classes):test_img = Image.open(image_path).convert('RGB')plt.imshow(test_img)  # 展示预测的图片test_img = transform(test_img)img = test_img.to(device).unsqueeze(0)model.eval()output = model(img)_,pred = torch.max(output,1)pred_class = classes[pred]print(f'预测结果是:{pred_class}') 

开始单张图片预测

predict_one_image(image_path='./data/beans/Dark/dark (1).png', model=model, transform=train_transforms, classes=classes) # 预测结果是:Dark

在这里插入图片描述
查看最优的模型的准确率和损失

best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
epoch_test_acc, epoch_test_loss # (0.9916666666666667, 0.0399394309388299)

其他问题

本次实验又使用了单GPU,进行训练

# 单GPU
from torchsummary import summary
# 将模型转移到GPU中
model = Model()
model = model.to(device)

结果如下
在这里插入图片描述

总结

本次实验主要手写了经典网络架构VGG16,并且使用两张GPU和一张GPU进行实验,但惊奇的发现,一张GPU运行时间是164秒,两张GPU运行时间是318秒,明明算力提高了,反而训练时间更加慢了,经过资料的查询,大概原因是数据量很小,GPU之间传递数据占用时间相对大于加速运算时间,所以训练时间反而变长了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/172406.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

集群节点批量执行 shell 命令

1、SSH 工具本身支持多窗口 比如 MobaXterm: 2、编写脚本通过 ssh 在多台机器批量执行shell命令 创建 ssh_hosts 配置文件,定义需要批量执行的节点(必须能够通过 ssh 免密登录,且存在同名用户) vim ssh_hostsbig…

C++之左值、右值、std::forward、std::move总结(二百五十)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 人生格言: 人生…

039-第三代软件开发-PDF阅读器

第三代软件开发-PDF阅读器 文章目录 第三代软件开发-PDF阅读器项目介绍PDF阅读器1 初始化PDF view2 qml 中使用3 创建模块 关键字: Qt、 Qml、 pdf、 LTDev、 本地 项目介绍 欢迎来到我们的 QML & C 项目!这个项目结合了 QML(Qt Met…

python二次开发Solidworks:齿轮生成器

目录 1、参数 2、手动建模 2.1方程式驱动曲线画渐开线 2.2画基圆、齿根圆、分度圆和齿顶圆 2.3画单个齿廓 2.4以齿厚拉伸基圆草图 2.5以齿厚拉伸单齿廓草图 2.6阵列齿数个单齿 3、python自动化建模 4、总结 1、参数 模数 "m" 2 齿数"z" 50 压…

白嫖在线云服务器,免费在 linux 服务器使用 docker 。 附视频+附文档

白嫖在线云服务器,免费在 linux 服务器使用 docker 。 附视频附文档 文章目录 前言启动 Nginx 案例最后 视频:https://www.bilibili.com/video/BV1WN411W79V/ 国内互联网经过多年发展,单体应用已经无法支持我们的互联网业务,分布…

Python---练习:有一物,不知其数,三三数之余二,五五数之余三,七七数之余二,问物几何?

案例: 有一物,不知其数,三三数之余二,五五数之余三,七七数之余二,问物几何? 人话: 有一个数字,不知道具体是多少,用3去除剩2,用5去除剩3&#…

Spring Boot进阶(93):体验式教程:手把手教你整合Spring Boot和Zipkin

📣前言 分布式系统开发中,服务治理是一个比较重要的问题。为了更好地实现服务治理,需要解决服务跟踪问题,即如何对分布式系统中的服务进行监控和追踪。本文将介绍如何使用Zipkin进行服务跟踪,并结合Spring Boot进行整合…

Spring Cloud之微服务

目录 微服务 微服务架构 微服务架构与单体架构 特点 框架 总结 SpringCloud 常用组件 与SpringBoot关系 版本 微服务 微服务:从字面上理解即:微小的服务; 微小:微服务体积小,复杂度低,一个微服…

小程序如何设置首选配送公司

小程序的一个重要环节就是配送服务。为了提供更好的发货体验,避免商家总是要在众多的配送公司中选择想要,小程序支持设置首选配送。下面将具体介绍一下小程序如何设置。 在小程序管理员后台->配送设置->首选配送处,指定需要设置的首选…

2.MySQL的调控按钮——启动选项和系统变量

2.MySQL的调控按钮——启动选项和系统变量 1.启动选项和配置文件1.1 在命令行上使用选项1.2 配置文件中使用选项1.2.1 配置文件路径1.2.2 配置文件的内容1.2.3 特定 MySQL 版本的专用选项组1.2.4 配置文件的优先级1.2.5 同一个配置文件中多个组的优先级1.2.6 defaults-file 的使…

基于5G工业CPE打造智慧煤矿无人巡检监测应用

煤炭是我国重要的能源资源,对于煤炭的开采和利用也是我国重要的工业产业部分。得益于5G物联网技术的发展普及,煤矿场景也迎来智能化升级,实现了包括智能采掘、智能调度、无人运输、无人巡检等新型应用,极大提升了煤矿采运产业的效…

【软考】10.1 算法特性/时间复杂度/递归/分治/动态规划

《算法》 《时间复杂度》 n 的最高次项 渐进符号 算法复杂度 线性级 O(n):顺序查找对数级 O(logn):对半查找、快速查找、归并算法 《递归》 时间复杂度 《分治法》 《动态规划法》 适用于求全局最优解构建…

【华为HCIP | 职业认证考试】821每日一刷

个人名片: 🐼作者简介:一名大三在校生,喜欢编程🎋 🐻‍❄️个人主页🥇:落798. 🐼个人WeChat:hmmwx53 🕊️系列专栏:🖼️ 零…

听GPT 讲Rust源代码--library/std(7)

题图来自 Programming languages: How Google is using Rust to reduce memory safety vulnerabilities in Android[1] File: rust/library/std/src/sys/unix/kernel_copy.rs 在Rust的标准库中,kernel_copy.rs文件位于sys/unix目录下,其主要作用是实现特…

IP地址与代理ip在网络安全中的关键作用

目录 前言 一、IP地址在网络安全中的作用 1、网络流量监视和分析 2、网络安全事件响应 3、网络安全检测和防御 二、代理IP在网络安全中的作用 1、流量过滤和清洗 2、匿名访问和保护隐私 3、实现全球化业务 三、IP地址和代理IP在网络安全中的应用案例 1、DDoS攻击 2…

消息队列中间件面试笔记总结RabbitMQ,Kafka,RocketMQ

文章目录 (一) Rabbit MQRabbitMQ 核心概念消息队列的作用Exchange(交换器)Broker(消息中间件的服务节点)如何保证消息的可靠性如何保证 RabbitMQ 消息的顺序性如何保证 RabbitMQ 高可用的?如何解决消息队列的延时以及过期失效问题消息堆积问…

react-高阶组件

一、什么是高阶组件 高阶组件( Higher-Order Component,HOC )是一个以组件作为参数,返回一个新组件的函数。 高阶组件最大的特点就是复用组件逻辑高阶组件本身并不是 React 的 API,而是React组件的一种设计模式&…

js中HTMLCollection如何循环

//不带索引 let divCon document.getElementsByClassName("el-form-item__error"); if (divCon.length > 0) {for (var item of divCon) {console.log("打印:", item.innerText);} }//带有索引 let divCon document.getElementsByClassNam…

【JAVA学习笔记】46 - (43)第十一章作业

项目代码 https://github.com/yinhai1114/Java_Learning_Code/tree/main/IDEA_Chapter11/src/com/yinhai/homework11 1.枚举类 1.创建一个Color枚举类 2.有RED,BLUE,BL ACK,YELLOW,GREEN这个五个枚举值/对象: 3. Color有三 个属性redValue, greenValue, blueValue, 4.创建构…

2023高频前端面试题-http

1. HTTP有哪些⽅法? HTTP 1.0 标准中,定义了3种请求⽅法:GET、POST、HEAD HTTP 1.1 标准中,新增了请求⽅法:PUT、PATCH、DELETE、OPTIONS、TRACE、CONNECT 2. 各个HTTP方法的具体作用是什么? 方法功能G…