【SPSS】基于RFM+Kmeans聚类的客户分群分析(文末送书)

🤵‍♂️ 个人主页:@艾派森的个人主页

✍🏻作者简介:Python学习者
🐋 希望大家多多支持,我们一起进步!😄
如果文章对你有帮助的话,
欢迎评论 💬点赞👍🏻 收藏 📂加关注+


目录

1.项目背景

2.项目简介

2.1分析目标

2.2数据说明

2.3技术工具

3.算法理论

3.1聚类

3.2 RFM模型

4.实验过程

4.1数据探索

4.2构建RFM模型

4.3聚类分群

5.总结

文末推荐与福利


1.项目背景

        随着行业竞争越来越激烈,商家将更多的运营思路转向客户。例如,购物时,常常被商家推荐扫码注册会员;各种电商平台也推出注册会员领优惠券等推销政策,而这些做法都是为了积累客户,以便对客户进行分析。

       那么,在商家积累的大量的客户交易数据中,如何根据客户历史消费记录分析不同客户群体的特征和价值呢?例如,了解哪些是重要保持客户、哪些是发展客户、哪些是潜在客户,从而针对不同客户群体定制不同的营销策略,实现精准营销、降低营销成本,提高销售业绩,使企业利润最大化。例如,淘宝电商客户繁多,消费行为复杂,客户价值很难人工评估,并对客户进行分类,这就霸要通过科学的分析方法评估客户价值,实现智能客户分类,快速定位客户、当然,也要清醒地认识到,即便是预测的客户价值较高,也只能说明其购买潜力较高,同时必须结合实际与客户互动,推动客户追加购买、交叉购买才是电商努力的方向。

2.项目简介

2.1分析目标

随着行业竞争越来越激烈,商家将更多的运营思路转向客户,客户是企业生存的关键,能够把握住客户就能够掌控企业的未来。客户的需求是客户消费的最直接原因,因此我们主要研究以下问题:

1)企业如何细分客户;

2)哪些是重要的保持客户 ;

3)哪些是发展客户;

4)哪些是潜在客户。

从而针对不同客户群体定制不同的营销策略,使企业利润最大化。

2.2数据说明

     实验使用从网络获取的客户数据集进行分析,数据集中共有2417行,4列数据。我们的目标就是细分客户,从而针对不同客户群体定制不同的营销策略,使企业利润最大化。

2.3技术工具

本次实验主要使用SPSS软件实现KMeans聚类算法和RFM模型。

3.算法理论

3.1聚类

        聚类,即将物理或抽象对象的集合分成由类似的对象组成的多个类的过程。由聚类所生成的簇是一组数据对象的集合,这些对象与同一个簇中的对象彼此相似,与其他簇中的对象相异。聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法。聚类分析起源于分类学,但是聚类不等于分类。聚类与分类的不同在于,聚类所要求划分的类是未知的。聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论聚类法、聚类预报法等。在数据挖掘中,聚类也是很重要的一个概念。传统的聚类分析计算方法主要有划分方法、层次方法、基于密度的方法、基于网格的方法、基于模型的方法五种。

3.2 RFM模型

R:最近消费时间间隔,表示客户最近一次消费时间与之前消费时间的距离。

R越大,表示客户越久未发生交易,R越小,表示客户最近有交易发生。R越大,则客户越可能会“沉睡”,流失的可能性越大。在这部分客户中,可能有些优质客户,值得通过一些营销手段进行激活。

F:消费频率,表示一段时间内的客户消费次数。F越大,则表示客户交易越频繁,是非常忠诚的客户,也是对公司的产品认同度较高的客户;F越小,则表示客户不够活跃,且可能是竞争对手的常客。针对F较小、且消费额较大的客户,需要推出一定的竞争策略,将这批客户从竞争对手中争取过来。

M:消费金额,表示客户每次消费金额,可以用最近-次消费金额,也可以用过去的平均消费金额,根据分析的目的不同,可以有不同的标识方法。

一般来讲,单次交易金额较大的客户,支付能力强,价格敏感度低,帕累托法则告诉我们,一个公司80%的收入都是由消费最多的20%客户贡献的,所以消费金额大的客户是较为优质的客户,也是高价值客户,这类客户可采取一对一的营销方案。

4.实验过程

4.1数据探索

首先导入数据

做出数据描述性统计

从数据描述性统计分析中我们可以看出各个变量的个案总计、最大最小值、均值、标准差、方差、偏度、峰度等信息。

做出各数值变量的直方图进行分析

对各变量进行相关性分析

从相关性结果看出,消费频率和最近消费时间间隔的相关系数较小,从P值看出,消费频率和最近消费时间间隔相关性不显著;消费频率和消费金额呈正相关,从P值看出,消费频率和消费金额相关性很显著。

4.2构建RFM模型

由于我们的原始数据已经符合RFM模型的要求,所以我们将变量名进行更改

由于RFM这三个变量的数值分布过于大,所以需要进行标准化处理

4.3聚类分群

使用SPSS进行K-均值聚类

从结果中,我们可以看出各个变量的聚类中心。

从结果中可看出各每一次的迭代记录。

从结果中可看出最终的聚类中心以及每个聚类类别的个数。

5.总结

        最后我们将客户群按价值高低进行分类和排名,客户群1是潜在客户;客户群3是一般发展客户,客户群2是一般保持客户,客户群4是重要保持客户。

R

F

M

聚类类别

客户类别

客户数

排名

1

潜在客户

2294

4

3

一般发展客户

120

3

2

一般保持客户

2

2

4

重要保持客户

1

1

根据以上分析,得到客户分类的依据:

(1)重要保持客户:F、M高,R略高于平均分。他们是淘宝电商的高价值客户,是最为理想型的客户类型,他们对企业品牌认可,对产品认可,贡献值最大,所占比例却非常小。这类客户花钱多又经常来,但是最近没来,这表示他们是一段时间没来的忠实客户。淘宝电商可以将这类客户作为VIP客户进行一对一营销,以提高这类客户的忠诚度和满意度,尽可能延长这类客户的高水平消费。

(2)一般保持客户: F高,这类客户消费次数多,是忠实的客户。针对这类客户应多传递促销活动、品牌信息、新品或活动信息等。

(3)潜在客户: R、F和M低,这类客户短时间内在店铺消费过,消费次数和消费金额较少,是潜在客户。虽然这类客户的当前价值并不是很高,但却有很大的发展潜力。针对这类客户应进行密集的营销信息推送,增加其在店铺的消费次数和消费金额。

(4)一般发展客户:低价值客户,R高,F、M低,说明这类客户很长时间没有在店铺进行交易了,而且消费次数和消费金额也较少。这类客户可能只会在店铺打折促销活动时才会消费,要想办法推动客户的消费心理,否则会有流失的危险。

文末推荐与福利

《MATLAB科学计算从入门到精通》免费包邮送出3本!

内容简介:   

        本书从 MATLAB 基础语法讲起,介绍了基于 MATLAB 函数的科学计算问题求解方法,实现了大量科学计算算法。

        本书分为三大部分。第 1 章和第 2 章为 MATLAB 的基础知识,对全书用到的 MATLAB 基础进行了简单介绍。第 3 ~ 12 章为本书的核心部分,包括线性方程组求解、非线性方程求解、数值优化、数据插值、数据拟合与回归分析、数值积分、常微分方程求解、偏微分方程求解、概率统计计算及图像处理与信号处理等内容。第 13 ~ 15 章为实战部分,以实际生活中的数学问题为例,将前文介绍的各类科学计算算法应用其中。

本书内容全面、通俗易懂,适合有一定 MATLAB 基础、想要进行进阶学习的读者。

编辑推荐:

从代码到函数,掌握多种经典算法

跨越多个领域,精通各类科学计算

多种应用实例,高效解决实际问题

  • 抽奖方式:评论区随机抽取3位小伙伴免费送出!
  • 参与方式:关注博主、点赞、收藏、评论区评论“人生苦短,拒绝内卷!”(切记要点赞+收藏,否则抽奖无效,每个人最多评论三次!
  • 活动截止时间:2023-11-1 20:00:00
  • 京东购买链接:https://item.jd.com/14098836.html

 名单公布时间:2023-11-1 21:00:00 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/173122.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

R-FCN: Object Detection via Region-based Fully Convolutional Networks(2016.6)

文章目录 AbstractIntroduction当前最先进目标检测存在的问题针对上述问题,我们提出... Our approachOverviewBackbone architecturePosition-sensitive score maps & Position-sensitive RoI pooling Related WorkExperimentsConclusion 原文链接 源代码 Abstr…

14. 机器学习 - KNN 贝叶斯

Hi,你好。我是茶桁。 咱们之前几节课的内容,从线性回归开始到最后讲到了数据集的处理。还有最后补充了SOFTMAX。 这些东西,都挺零碎的,但是又有着相互之间的关系,并且也都蛮重要的。并且是在学习机器学习过程当中比较…

IDE的组成

集成开发环境(IDE,Integrated Development Environment )是用于提供程序开发环境的应用程序,一般包括代码编辑器、编译器、调试器和图形用户界面等工具。集成了代码编写功能、分析功能、编译功能、调试功能等一体化的开发软件服务…

Java面向对象(进阶)-- 拼电商客户管理系统(康师傅)

文章目录 一、目标二、需求说明(1)主菜单(2)添加客户(3)修改客户(4)删除客户(5)客户列表 三、软件设计结构四、类的设计(1)Customer类…

20.1 OpenSSL 字符BASE64压缩算法

OpenSSL 是一种开源的加密库,提供了一组用于加密和解密数据、验证数字证书以及实现各种安全协议的函数和工具。它可以用于创建和管理公钥和私钥、数字证书和其他安全凭据,还支持SSL/TLS、SSH、S/MIME、PKCS等常见的加密协议和标准。 OpenSSL 的功能非常…

matlab创建矩阵、理解三维矩阵

1.创建矩阵 全0矩阵:a zeros(2,3,4) 全1矩阵:a ones(2,3,4) !和python不一样的地方!此处相当于创建了4页2行3列的矩阵,而在python里是2页3行4列。 对第1页的第2行第3列元素进行修改:

拉扎维模拟CMOS集成电路设计西交张鸿老师课程P2~5视频学习记录

目录 p2 p3 p4 p5 --------------------------------------------------------------------------------------------------------------------------------- p2 -----------------------------------------------------------------------------------------------------…

进程程序替换

什么是进程程序替换: 用fork创建子进程后执行的是和父进程相同的程序(但有可能执行不同的代码分支),子进程往往要调用一种exec函数 以执行另一个程序。当进程调用一种exec函数时,该进程的用户空间代码和数据完全被新程序替换,从新程序的启动 例程开始执行。调用ex…

Qt配置OpenCV教程,亲测已试过

详细版可参考:Qt配置OpenCV教程,亲测已试过(详细版)_qt opencv_-_Matrix_-的博客-CSDN博客 软件准备:QtOpenCVCMake (QtOpenCV安装不说了,CMake的安装,我用的是:可参考博客&#x…

《动手学深度学习 Pytorch版》 10.6 自注意力和位置编码

在注意力机制中,每个查询都会关注所有的键-值对并生成一个注意力输出。由于查询、键和值来自同一组输入,因此被称为 自注意力(self-attention),也被称为内部注意力(intra-attention)…

【深度学习】吴恩达课程笔记(一)——深度学习概论、神经网络基础

笔记为自我总结整理的学习笔记,若有错误欢迎指出哟~ 吴恩达课程笔记——深度学习概论、神经网络基础 一、概念区别1.深度学习与机器学习2.深度学习与神经网络 二、什么是神经网络1.分类2.特点3.工作原理4.神经网络示意图5.神经网络进行监督学习6.深度学习的发展 三、…

Domino中的源代码管理工具

大家好,才是真的好。 上次Notes/Domino 14 Drop2发布的时候,我们就提到,HCL一起发布了一款源代码管理工具。 这里还是简单科普一下,源代码管理工具,可以实现代码版本控制、备份,还有多个程序员之间的协作…

2023版 STM32实战12 IIC总线读写AT24C02

IIC简述 一个多主从的串行总线,又叫I2C,是由飞利浦公司发明的通讯总线 IIC特点 -1- 串行(逐bit传输) -2- 同步(共用时钟线) -3- 半双工(收发不同进行) -4- 总线上的任何设备都可以是主机 开发使用习惯和理解 -1- 通过地址寻址 -2- 数据线的…

JVM进阶(2)

一)方法区: java虚拟机中有一个方法区,该区域被所有的java线程都是共享,虚拟机一启动,运行时数据区就被开辟好了,官网上说了方法区可以不压缩还可以不进行GC,JAVA虚拟机就相当于是接口,具体的HotSpot就是虚…

IP应用场景API的反欺诈潜力:保护在线市场不受欺诈行为侵害

前言 在数字化时代,网络上的商业活动迅速增长,但与之同时,欺诈行为也在不断演化。欺诈者不断寻找新方法来窃取个人信息、进行金融欺诈以及实施其他不法行为。为了应对这一威胁,企业和组织需要强大的工具,以识别和防止…

VScode远程连接错误:进程试图写入不存在的管道

使用VScode连接树莓派时,出现远程连接错误:进程试图写入不存在的管道 解决方案: (1)可以进入config所在文件夹,删除文件 (2)无法解决的化尝试下述方法 输入 Remotting-SSH:Settin…

Go学习第十八章——Gin日志与第三方工具Logrus

Go web框架——Gin日志与第三方工具Logrus Gin日志功能1 基础介绍1.1 快速入门1.2 日志基础使用1.3 将日志输出到文件 2 定义路由格式3 修改日志级别4 修改日志格式 第三方日志工具logrus1 快速入门1.1 安装1.2 使用 2 基本功能使用2.1 设置日志输出格式2.2 设置日志输出位置2.…

【C++初阶(三)】引用内联函数auto关键字

目录 前言 1. 引用 1.1 引用的概念 1.2 引用的特性 1.3 引用的权限 1.4 引用的使用 1.5 引用与指针的区别 2. 内联函数 2.1 什么是内联函数 2.2 内联函数的特性 3. auto关键字 3.1 auto简介 3.2 auto使用规则 3.3 auto不能使用的场景 4. 基于范围的for循环 4.1 范围for…

震惊!原来BUG是这么理解的!什么是BUG?软件错误(BUG)的概念

较为官方的概念: 当且仅当规格说明是存在的并且正确,程序与规格说明之间的 不匹配才是错误。 当需求规格说明书没有提到的功能,判断标准以最终用户为准:当程序没有实现其最终用户合理预期的 功能要求时,就是软…

【Python · PyTorch】线性代数 微积分

本文采用Python及PyTorch版本如下: Python:3.9.0 PyTorch:2.0.1cpu 本文为博主自用知识点提纲,无过于具体介绍,详细内容请参考其他文章。 线性代数 & 微积分 1. 线性代数1.1 基础1.1.1 标量1.1.2 向量长度&…