R-FCN: Object Detection via Region-based Fully Convolutional Networks(2016.6)


文章目录

  • Abstract
  • Introduction
    • 当前最先进目标检测存在的问题
    • 针对上述问题,我们提出...
  • Our approach
    • Overview
    • Backbone architecture
    • Position-sensitive score maps & Position-sensitive RoI pooling
  • Related Work
  • Experiments
  • Conclusion

原文链接
源代码

Abstract

我们提出了基于区域的全卷积网络,用于准确高效的目标检测。与之前基于区域的检测器(如Fast/Faster R-CNN[6,18])相比,我们的基于区域的检测器是完全卷积的,几乎所有的计算都是在整个图像上共享的。为了实现这一目标,我们提出了位置敏感分数映射*,以解决图像分类中的平移不变性和目标检测中的平移方差之间的困境**。因此,我们的方法可以自然地采用全卷积图像分类器骨架,例如最新的残差网络(ResNets)[9],用于对象检测。我们在PASCAL VOC数据集上展示了与101层ResNet的竞争结果(例如,2007年集上的83.6% mAP)。同时,我们的结果是在每幅图像170ms的测试时间速度下实现的,比faster R-CNN快2.5-20倍

Introduction

当前最先进目标检测存在的问题

用于目标检测的流行的深度网络家族(Fast R-CNN、Faster R-CNN、SPPnet)可以通过感兴趣区域**(RoI)池化层分为两个子网络**:
(i)独立于roi的共享的“完全卷积”子网,以及(ii)不共享计算的roi智能子网
最先进的图像分类网络,如ResNets (ResNets)[9]和GoogLeNets[24,26],在设计上是完全卷积的
然而这种解决方案的检测精度相当低,与网络的优越分类精度不匹配
为了解决这个问题,在ResNet论文[9]中,Faster R-CNN检测器[18]的RoI池层被不自然地插入到两组卷积层之间——这创建了一个更深的RoI智能子网,提高了准确性,但代价是由于未共享每个RoI的计算而降低了速度

我们认为,上述非自然设计是由于增加图像分类的平移不变性与关于目标检测的平移方差的两难境地造成的

针对上述问题,我们提出…

在本文中,我们开发了一种称为基于区域的全卷积网络(R-FCN)的目标检测框架,我们的网络由共享的、全卷积的架构组成,就像FCN一样。为了将平移方差整合到FCN中,我们使用一组专门的卷积层作为FCN输出,构建了一组位置敏感的分数映射,整个体系结构是端到端学习的

Our approach

Overview


区域生成网络(RPN)[18]提出候选RoI,然后将其应用于得分图。所有可学习的权重层都是卷积的,并在整个图像上计算,每个RoI的计算成本可以忽略不计。最后一个卷积层为每个类别生成k^2个位置敏感分数映射库,因此具有具有C个对象类别(+1为背景)会有k² (C +1) - 通道个输出层。k²个分数映射对应于描述相对位置的k × k空间网格。例如,使用k×k = 3×3, 9个分数映射编码{左上、中上、右上、…,右下}的对象类别。R-FCN以位置敏感的RoI池化层结束,这一层聚集了最后一个卷积层的输出,并为每个RoI生成分数,我们的位置敏感RoI层进行了选择性池化,每个k × k箱只聚合了k × k个分数图库中的一个分数图的响应,通过端到端训练,这个RoI层引导最后一个卷积层学习专门的位置敏感分数映射

R-FCN用于目标检测的关键思想(上图):在这个例子中,有k × k = 3 × 3个由全卷积网络生成的位置敏感分数图。对于RoI中的每一个k × k个箱,池化只在k²个地图中的一个上执行(用不同的颜色标记)

Backbone architecture

本文中R-FCN的化身基于ResNet-101[9],但其他网络[10,23]也适用。ResNet-101有100个卷积层,然后是全局平均池化和1000类fc层。我们去掉了平均池化层和fc层只使用卷积层来计算特征映射。我们使用[9]作者发布的ResNet-101,在ImageNet[20]上进行预训练。ResNet-101中的最后一个卷积块是2048-d,我们附加了一个随机初始化的1024-d 1 × 1卷积层来降维(准确地说,这将表1中的深度增加了1)。然后我们应用k²(C +1)通道卷积层来生成分数图

Position-sensitive score maps & Position-sensitive RoI pooling

为了显式地将位置信息编码到每个RoI中,我们通过规则网格将每个RoI矩形划分为k × k个箱,对于大小为w×h的RoI矩形,bin的大小为≈w/k
× h/k,在我们的方法中,最后一个卷积层被构造为每个类别生成k²个分数图
r c (i,j)是c -类在(i,j) - bin中的集合响应,z i,j,c是k²(c + 1)个分数图中的一个分数图,(x 0,y 0)表示RoI的左上角,n是bin中的像素数,Θ表示网络的所有可学习参数

Related Work

R-CNN b[7]已经证明了在深度网络中使用区域提议的有效性[27,28]。R-CNN对裁剪和扭曲区域上的卷积网络进行评估,计算不在区域之间共享(表1)。SPPnet[8]、Fast R-CNN[6]和Faster R-CNN[18]是“半卷积”的,其中一个卷积子网络对整个图像执行共享计算,另一个子网络对单个区域进行评估。有一些物体检测器可以被认为是“完全卷积”模型。OverFeat[21]通过在共享卷积特征映射上滑动多尺度窗口来检测对象

Experiments







Conclusion

我们提出了基于区域的全卷积网络,这是一种简单、准确、高效的目标检测框架。我们的系统自然采用了最先进的图像分类主干,如ResNets,它在设计上是完全卷积的。我们的方法达到了与Faster R-CNN相媲美的精度,但在训练和推理过程中都要快得多

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/173121.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

14. 机器学习 - KNN 贝叶斯

Hi,你好。我是茶桁。 咱们之前几节课的内容,从线性回归开始到最后讲到了数据集的处理。还有最后补充了SOFTMAX。 这些东西,都挺零碎的,但是又有着相互之间的关系,并且也都蛮重要的。并且是在学习机器学习过程当中比较…

IDE的组成

集成开发环境(IDE,Integrated Development Environment )是用于提供程序开发环境的应用程序,一般包括代码编辑器、编译器、调试器和图形用户界面等工具。集成了代码编写功能、分析功能、编译功能、调试功能等一体化的开发软件服务…

Java面向对象(进阶)-- 拼电商客户管理系统(康师傅)

文章目录 一、目标二、需求说明(1)主菜单(2)添加客户(3)修改客户(4)删除客户(5)客户列表 三、软件设计结构四、类的设计(1)Customer类…

20.1 OpenSSL 字符BASE64压缩算法

OpenSSL 是一种开源的加密库,提供了一组用于加密和解密数据、验证数字证书以及实现各种安全协议的函数和工具。它可以用于创建和管理公钥和私钥、数字证书和其他安全凭据,还支持SSL/TLS、SSH、S/MIME、PKCS等常见的加密协议和标准。 OpenSSL 的功能非常…

matlab创建矩阵、理解三维矩阵

1.创建矩阵 全0矩阵:a zeros(2,3,4) 全1矩阵:a ones(2,3,4) !和python不一样的地方!此处相当于创建了4页2行3列的矩阵,而在python里是2页3行4列。 对第1页的第2行第3列元素进行修改:

拉扎维模拟CMOS集成电路设计西交张鸿老师课程P2~5视频学习记录

目录 p2 p3 p4 p5 --------------------------------------------------------------------------------------------------------------------------------- p2 -----------------------------------------------------------------------------------------------------…

进程程序替换

什么是进程程序替换: 用fork创建子进程后执行的是和父进程相同的程序(但有可能执行不同的代码分支),子进程往往要调用一种exec函数 以执行另一个程序。当进程调用一种exec函数时,该进程的用户空间代码和数据完全被新程序替换,从新程序的启动 例程开始执行。调用ex…

Qt配置OpenCV教程,亲测已试过

详细版可参考:Qt配置OpenCV教程,亲测已试过(详细版)_qt opencv_-_Matrix_-的博客-CSDN博客 软件准备:QtOpenCVCMake (QtOpenCV安装不说了,CMake的安装,我用的是:可参考博客&#x…

《动手学深度学习 Pytorch版》 10.6 自注意力和位置编码

在注意力机制中,每个查询都会关注所有的键-值对并生成一个注意力输出。由于查询、键和值来自同一组输入,因此被称为 自注意力(self-attention),也被称为内部注意力(intra-attention)…

【深度学习】吴恩达课程笔记(一)——深度学习概论、神经网络基础

笔记为自我总结整理的学习笔记,若有错误欢迎指出哟~ 吴恩达课程笔记——深度学习概论、神经网络基础 一、概念区别1.深度学习与机器学习2.深度学习与神经网络 二、什么是神经网络1.分类2.特点3.工作原理4.神经网络示意图5.神经网络进行监督学习6.深度学习的发展 三、…

Domino中的源代码管理工具

大家好,才是真的好。 上次Notes/Domino 14 Drop2发布的时候,我们就提到,HCL一起发布了一款源代码管理工具。 这里还是简单科普一下,源代码管理工具,可以实现代码版本控制、备份,还有多个程序员之间的协作…

2023版 STM32实战12 IIC总线读写AT24C02

IIC简述 一个多主从的串行总线,又叫I2C,是由飞利浦公司发明的通讯总线 IIC特点 -1- 串行(逐bit传输) -2- 同步(共用时钟线) -3- 半双工(收发不同进行) -4- 总线上的任何设备都可以是主机 开发使用习惯和理解 -1- 通过地址寻址 -2- 数据线的…

JVM进阶(2)

一)方法区: java虚拟机中有一个方法区,该区域被所有的java线程都是共享,虚拟机一启动,运行时数据区就被开辟好了,官网上说了方法区可以不压缩还可以不进行GC,JAVA虚拟机就相当于是接口,具体的HotSpot就是虚…

IP应用场景API的反欺诈潜力:保护在线市场不受欺诈行为侵害

前言 在数字化时代,网络上的商业活动迅速增长,但与之同时,欺诈行为也在不断演化。欺诈者不断寻找新方法来窃取个人信息、进行金融欺诈以及实施其他不法行为。为了应对这一威胁,企业和组织需要强大的工具,以识别和防止…

VScode远程连接错误:进程试图写入不存在的管道

使用VScode连接树莓派时,出现远程连接错误:进程试图写入不存在的管道 解决方案: (1)可以进入config所在文件夹,删除文件 (2)无法解决的化尝试下述方法 输入 Remotting-SSH:Settin…

Go学习第十八章——Gin日志与第三方工具Logrus

Go web框架——Gin日志与第三方工具Logrus Gin日志功能1 基础介绍1.1 快速入门1.2 日志基础使用1.3 将日志输出到文件 2 定义路由格式3 修改日志级别4 修改日志格式 第三方日志工具logrus1 快速入门1.1 安装1.2 使用 2 基本功能使用2.1 设置日志输出格式2.2 设置日志输出位置2.…

【C++初阶(三)】引用内联函数auto关键字

目录 前言 1. 引用 1.1 引用的概念 1.2 引用的特性 1.3 引用的权限 1.4 引用的使用 1.5 引用与指针的区别 2. 内联函数 2.1 什么是内联函数 2.2 内联函数的特性 3. auto关键字 3.1 auto简介 3.2 auto使用规则 3.3 auto不能使用的场景 4. 基于范围的for循环 4.1 范围for…

震惊!原来BUG是这么理解的!什么是BUG?软件错误(BUG)的概念

较为官方的概念: 当且仅当规格说明是存在的并且正确,程序与规格说明之间的 不匹配才是错误。 当需求规格说明书没有提到的功能,判断标准以最终用户为准:当程序没有实现其最终用户合理预期的 功能要求时,就是软…

【Python · PyTorch】线性代数 微积分

本文采用Python及PyTorch版本如下: Python:3.9.0 PyTorch:2.0.1cpu 本文为博主自用知识点提纲,无过于具体介绍,详细内容请参考其他文章。 线性代数 & 微积分 1. 线性代数1.1 基础1.1.1 标量1.1.2 向量长度&…

JEnv使用初体验

Java多版本控制器初体验 1、前言 由于公司项目使用jdk8版本,而日常学习会使用其他版本例如jdk17等,往常都是修改环境配置目录实现。 2、下载资料 链接:https://pan.baidu.com/s/1UqzHv8K8WBu-75Ysyc_h3A 提取码:ra6a 3、安装 …