2017年亚太杯APMCM数学建模大赛B题喷雾轨迹规划问题求解全过程文档及程序

2017年亚太杯APMCM数学建模大赛

B题 喷雾轨迹规划问题

原题再现

  喷釉工艺用喷釉枪或喷釉机在压缩空气下将釉喷入雾中,使釉附着在泥体上。这是陶瓷生产过程中一个容易实现自动化的过程。由于不均匀的釉料在烧制过程中会产生裂纹,导致工件报废,因此要求喷涂过程中喷涂的釉料厚度尽可能均匀。

  在实际的空气喷涂中,压缩空气通常布置在喷枪嘴的两侧,雾锥被挤压成椭圆锥,漆雾形成的喷雾锥覆盖的平面上的区域是椭圆,半长轴为a,半短轴为b,如图1所示。
在这里插入图片描述
  它在椭圆分布区域中满足椭圆双β分布模型:
在这里插入图片描述
  式中:a——喷淋椭圆半长轴(mm);b——喷淋椭圆的半短轴(mm);maxz——漆膜最大厚度;β1−x方向截面β分布指数;β2−y方向截面中β分布的指数。
  有研究表明,雾化压力P1、隔膜泵压力P2和喷雾距离h是影响上述参数的主要因素,它们之间的关系如下:
在这里插入图片描述
  上述模型为单点喷枪喷涂模型。然而,在实践中,喷枪需要沿着计划的路径移动,以便要喷涂的工件表面均匀地覆盖釉,如图2所示。
在这里插入图片描述
  由于单点喷涂时,雾锥区域厚度中间偏大,两侧偏薄,为保证喷涂表面均匀,雾锥将在图3中相邻路径重叠。
在这里插入图片描述
  基于上述背景,我们尝试探讨以下四个问题:

  1、根据以上资料,如果喷枪的喷涂方向始终保持不变(如图4所示),请计算平面内喷涂的累积情况,找出喷枪轨迹的合适重叠间隔(P1和P2取0.2Mpa,h取225mm)。
在这里插入图片描述
  2、对于曲面z=−x~2+x−xy(−10≤x≤10,−10≤y≤10),确定问题1中计算的喷涂间隔是否适用。如果没有,请重新规划喷枪轨迹,并计算重叠间隔,使釉面厚度差小于10%(不同轨迹的间隔可以不同,P1和P2取0.2Mpa,h可根据实际需要选择)。

  3、喷涂过程中,如果喷枪的喷涂方向始终是雾锥中心(如图5所示)喷涂点的法线方向,其他条件不变,请重新计算问题2的结果。
在这里插入图片描述
  4、问题3的结果是否适用于任何曲面z=f(x,y)?喷涂路径规划是否有通用解决方案

整体求解过程概述(摘要)

  机器人上釉作为提高陶瓷生产过程自动化程度的一种新方法,对提高上釉效率有一定的作用。因此,探索机器人釉料在不同工件表面条件下的自动轨迹规划对提高陶瓷工艺现代化水平具有重要意义。

  平面釉料自动轨迹规划:首先,将微积分法与椭圆双β分布模型相结合,建立以釉料厚度均匀性为目标的平面釉料轨迹优化模型。最后,对不同横截面的釉膜厚度模型进行仿真分析,验证了模型的正确性。

  曲面(垂直于水平方向)施釉轨迹规划:首先,采用投影法对椭圆双β分布模型进行修正,得到施釉方向垂直于水平方向时曲面的釉膜厚度分布模型

  确定方向。然后,建立曲面轨道优化模型,对最小釉厚差进行优化。最后证明了问题1的重叠区间不适用于问题2的曲面,问题2的重叠区间d的最优解为89.36~95.05mm。

  曲面(沿喷点法向)施釉轨迹规划:首先采用投影法修正平面椭圆双β分布模型,建立喷釉方向为雾锥中心喷点法向时的釉膜厚度分布模型。然后,基于切片算法,以涂层均匀性为优化目标,建立了表面喷釉轨迹优化模型。最后证明了曲面重叠间隔d的最优解为80.26~90.53mm。

  任意曲面釉面轨迹规划:首先利用β角、θ角、喷枪高度等参数描述不同曲面之间的差异。通过改变不同的地面观测参数,重复发射装置的参数。最后,采用黄金分割迭代法求出d值,并编制了任意面釉轨迹规划程序。通过MATLAB仿真验证了模型的正确性,结果符合标准。

模型假设:

  ➢ 边缘厚度对喷涂层厚度分布模型没有影响。

  ➢ 喷涂机器人喷涂一定高度,不改变。

  ➢ 机器人在涂布过程中的速度恒定,没有突变。

问题重述:

  问题背景

  喷釉是陶瓷生产工艺的重要组成部分,由于釉面不均匀在烧成过程中会产生裂纹,导致零件报废,因此喷釉工艺要求喷釉尽可能厚,同时也降低了效率。

  机器人上釉的出现为提高上釉效率提供了一条新途径,对提高陶瓷生产过程的自动化具有重要意义。

  我们的工作

  ➢ 分析了机器人喷釉的平面釉厚度分布,设计了平面釉自动轨迹优化方案。

  ➢ 探讨了机器人搪瓷上釉方向与水平方向垂直时曲面上釉膜厚度的分布情况,建立了该条件下曲面上釉的自动轨迹优化方案。

  ➢ 研究了沿锥体法向喷涂的锥体曲面上釉膜厚度的分布。建立了该条件下表面施釉自动轨迹的优化方案。

  ➢ 探究工件表面是否为任意曲面,是否有通用的自动喷釉机器人优化方案来解决喷釉路径规划问题。

模型的建立与求解整体论文缩略图

在这里插入图片描述
在这里插入图片描述

全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

程序代码:

部分程序如下:
[x,y]=meshgrid(-10:1:10);
z=-x.^2+x-x.*y;
mesh(x,y,z);
title('curved surface z')
xlabel('X');
ylabel('Y');
zlabel('Z');
[x,y]=meshgrid(-10:1:10);
z=-x.^2+x-x.*y;
mesh(x,y,z);
title('curved surface z')
xlabel('X');
ylabel('Y');
zlabel('Z');
hold on
ezmesh('0')
A=[129.8665 -55.2435 1.7436 -297.3908;52.5130 -5.7480 0.7394 -128.6368;59.7245 393.9655 -0.1244 150.0184;-7.0125 34.5045 0.0284 -9.5229;-4.6130 18.3620 0.0113 -0.3924];
B=[0.2 0.2 225 1];
C=A*B'
a=C(1);
b=C(2);
Zmax=C(3);
beta1=C(4);
beta2=C(5);
Zmin1=Zmax*(1-(a^2/b^2))^(beta2-1);
y1=sqrt((b^2)*(1-exp((1/(beta2-1))*log((Zmax-Zmin1)/Zmax))));
d1=abs(a-y1);
Zmin2=Zmax*(1-b^2/a^2)^(beta1-1);
x2=sqrt((a^2)*(1-exp((1/(beta1-1))*log((Zmax-Zmin2)/Zmax))));
d2=abs(b-x2);
A=[129.8665 -55.2435 1.7436 -297.3908;52.5130 -5.7480 0.7394 -128.6368;59.7245 393.9655 -0.1244 150.0184;-7.0125 34.5045 0.0284 -9.5229;-4.6130 18.3620 0.0113 -0.3924];
B=[0.2 0.2 225 1];
C=A*B';
a=C(1);
b=C(2);
Zmax=C(3);
beta1=C(4);
beta2=C(5);
Zmin1=Zmax*(1-(a^2/b^2))^(beta2-1);
y1=sqrt((b^2)*(1-exp((1/(beta2-1))*log((Zmax-Zmin1)/Zmax))));
d1=abs(a-y1);
Zmax=C(3);
Z1=Zmax
z=-1+1-(a-d1+1);
h1=0-z;
h=B(3)+h1;
B1=[0.2 0.2 h 1];
C1=A*B1';
a1=C1(1);
b1=C1(2);
Zmax=C1(3);
beta1=C1(4);
beta2=C1(5);
Z2=Zmax*(1-1/a1^2)^(beta1-1)*(1-(a-d1+1)^2/(b1^2*(1-1/a1^2)))^(beta2-
1);
if Z1==Z2fprintf('the overlap interval is suitable')
elsefprintf('the overlap interval isn’t suitable')
end
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/173158.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

https下载图片

OpenSSL用法示例 OpenSSL源码安装 对于ubuntu,懒得编译源码可以直接安装 sudo apt-get install libssl–dev /usr/include/openssl/ssl.h CMakeLists中添加 link_libraries(ssl crypto) apt-get安装不需要再制定libssl.a, libcrypto.a的路径了, 就像用libc标…

【算法|动态规划 | 01背包问题No.1】AcWing 426. 开心的金明

个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【AcWing算法提高学习专栏】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程&a…

node模块导出引入两种方式和npm包管理

模块化的好处 在 Node.js 中每个文件都被当做是一个独立的模块,模块内定义的变量和函数都是独立作用域的,因为 Node.js 在执行模块代码时,将使用如下所示的函数封装器对其进行封装 (function(exports,require,module,__filename,_dirname){//…

C# | Chaikin算法 —— 计算折线对应的平滑曲线坐标点

Chaikin算法——计算折线对应的平滑曲线坐标点 本文将介绍一种计算折线对应的平滑曲线坐标点的算法。该算法使用Chaikin曲线平滑处理的方法,通过控制张力因子和迭代次数来调整曲线的平滑程度和精度。通过对原始点集合进行切割和插值操作,得到平滑的曲线坐…

CNN 网络结构简介

本文通过整理李宏毅老师的机器学习教程的内容,介绍 CNN(卷积神经网络)的网络结构。 CNN 网络结构, 李宏毅 CNN 主要应用在图像识别(image classification, 图像分类)领域。 通常,输入的图片大小相同&am…

【开源】基于SpringBoot的计算机机房作业管理系统的设计和实现

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 登录注册模块2.2 课程管理模块2.3 课时管理模块2.4 学生作业模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 课程表3.2.2 课时表3.2.3 学生作业表 四、系统展示五、核心代码5.1 查询课程数据5.2 新增课时5.3 提交作…

Jupyter Notebook还有魔术命令?太好使了

在Jupyter Notebooks中,Magic commands(以下简称魔术命令)是一组便捷的功能,旨在解决数据分析中的一些常见问题,可以使用%lsmagic 命令查看所有可用的魔术命令 插播,更多文字总结指南实用工具科技前沿动态…

视频上的水印文字如何去掉?

嘿,大家好!作为一个自媒体从业者,我相信大家都想知道如何去掉视频上的水印文字,想必大家和我一样每天都会在互联网寻找素材,而大部分图片或者视频都带有各种各样的水印,这给我的创作带来了不小的麻烦&#…

Vue 3.3.6 ,得益于WeakMap,比之前更快了

追忆往昔,穿越前朝,CSS也是当年前端三剑客之一,风光的很,随着前端跳跃式的变革,CSS在现代前端开发中似乎有点默默无闻起来。 不得不说当看到UnoCss之前,我甚至都还没听过原子化CSS[1]这个概念(…

[开源]一个低代码引擎,支持在线实时构建低码平台,支持二次开发

一、开源项目简介 TinyEngine低代码引擎使能开发者定制低代码平台,支持在线实时构建低码平台,支持二次开发或集成低码平台能力。 二、开源协议 使用MIT开源协议 三、界面展示 四、功能概述 TinyEngine是一个低代码引擎,基于这个引擎可以构…

【Java每日一题】——第四十三题:USB接口程序设计。(2023.10.29)

🎃个人专栏: 🐬 算法设计与分析:算法设计与分析_IT闫的博客-CSDN博客 🐳Java基础:Java基础_IT闫的博客-CSDN博客 🐋c语言:c语言_IT闫的博客-CSDN博客 🐟MySQL&#xff1a…

中颖单片机SH367309全套量产PCM,专用动力电池保护板开发资料

方案总体介绍 整套方案硬件部分共2块板子,包括MCU主板,采用SH79F6441-32作为主处理器。MCU主板包括2个版本。PCM动力电池保护板采用SH367309。 软件方案采用Keil51建立的工程,带蓝牙的版本,支持5~16S电池。 硬件方案--MCU主板 MC…

【Matlab2016】Matlab中文版的下载、安装、激活(不建议安装过高版本!!)

这里写目录标题 首先双击R2016_win64.iso加载镜像文件双击setup.exe开始安装选择使用文件密钥安装填入密钥修改安装路径并记住此路径建议全部勾选等待安装完成 激活复制补丁到matlab路径下 创建快捷方式进入bin目录,找到matlab.exe 安装包 首先双击R2016_win64.iso加…

java基础巩固

JDK11和JDK8是oracle重点维护的 常用的包 单例 多例 枚举 jar包打包 测试

STM32:TTL串口调试

一.TTL串口概要 TTL只需要两个线就可以完成两个设备之间的双向通信,一个发送电平的I/O称之为TX,与另一个设备的接收I/O口RX相互连接。两设备之间还需要连接地线(GND),这样两设备就有相同的0V参考电势。 二.TTL串口调试 实现电脑通过STM32发送…

Latex报错 “Paragraph ended before \Gin@iii was complete“

大家看看自己的模版的前面 加载的包 里面是不是有个 \usepackage{graphics} 问题就在这里,我们需要把它改成\usepackage{graphicx}

Windows客户端下pycharm配置跳板机连接内网服务器

问题:实验室服务器仅限内网访问,无法在宿舍(外网)访问实验室的所有内部服务器,但同时实验室又提供了一个外网可以访问的跳板机,虽然可以先ssh到跳板机再从跳板机ssh到内网服务器,但这种方式不方…

类EMD的“信号分解方法”及MATLAB实现(第八篇)——离散小波变换DWT(小波分解)

在之前的系列文章里,我们介绍了EEMD、CEEMD、CEEMDAN、VMD、ICEEMDAN、LMD、EWT,我们继续补完该系列。 今天要讲到的是小波分解,通常也就是指离散小波变换(Discrete Wavelet Transform, DWT)。在网上有一些介绍该方法…

C#学习相关系列之多线程(七)---Task的相关属性用法

一、Task和Thread的区别 任务是架构在线程之上的,任务最终的执行还是要给到线程去执行的。任务和线程之间不是一对一的关系,任务更像线程池,任务相比线程池有很小的开销和精确的控制。(总的来说Task的用法更为先进,在多线程的时候…

06 MIT线性代数-列空间和零空间 Column space Nullspace

1. Vector space Vector space requirements vw and c v are in the space, all combs c v d w are in the space 但是“子空间”和“子集”的概念有区别,所有元素都在原空间之内就可称之为子集,但是要满足对线性运算封闭的子集才能成为子空间 中 2 …