基于群居蜘蛛算法的无人机航迹规划

基于群居蜘蛛算法的无人机航迹规划

文章目录

  • 基于群居蜘蛛算法的无人机航迹规划
    • 1.群居蜘蛛搜索算法
    • 2.无人机飞行环境建模
    • 3.无人机航迹规划建模
    • 4.实验结果
      • 4.1地图创建
      • 4.2 航迹规划
    • 5.参考文献
    • 6.Matlab代码

摘要:本文主要介绍利用群居蜘蛛算法来优化无人机航迹规划。

1.群居蜘蛛搜索算法

群居蜘蛛算法原理请参考:https://blog.csdn.net/u011835903/article/details/108406547

2.无人机飞行环境建模

? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基
础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采取函数模拟法模拟地貌特征。其函数表达式为:
z ( x , y ) = s i n ( y + a ) + b s i n ( x ) + c c o s ( d y 2 + x 2 ) + e c o s ( y ) + f s i n ( f y 2 + x 2 ) + g c o s ( y ) (1) z(x,y)=sin(y+a)+bsin(x)+ccos(d\sqrt{y^2+x^2})+ecos(y)+fsin(f\sqrt{y^2+x^2})+gcos(y)\tag{1} z(x,y)=sin(y+a)+bsin(x)+ccos(dy2+x2 )+ecos(y)+fsin(fy2+x2 )+gcos(y)(1)
其中, ( x , y ) (x, y) (x,y) 为地形上某点投影在水平面上的点坐标, z z z 则为对应点坐标的高度。式中 a , b , c , d , e , f , g a, b, c, d, e, f , g a,b,c,d,e,f,g 是常系数,想要得到不同的地貌特征可以通过改变其常系数的大小,以上建模是作为环境模型的基准地形信息。但为了得到障碍区域我们还需要在这个基准地形上叠加山峰模型,这样就可以模拟像山峰、丘陵等障碍地理信息。山峰模型的数学表达式为:
h ( x , y ) = ∑ i h i e x p [ − ( x − x o i ) 2 a i 2 − ( y − y o i ) 2 b i 2 ] + h o (2) h(x,y)=\sum_ih_iexp[-\frac{(x-x_{oi})^2}{a_i^2}-\frac{(y-y_{oi})^2}{b_i^2}]+h_o \tag{2} h(x,y)=ihiexp[ai2(xxoi)2bi2(yyoi)2]+ho(2)
式 (2)中, h o h_o ho h i h_i hi 分别表示基准地形和第 i i i座山峰的高度, ( x o i , y o i ) (xoi , y oi ) (xoi,yoi)则表示第 i座山峰的中心坐标位置,a i 和 b i 分别是第 i 座山峰沿 x 轴和 y 轴方向的坡度。由式(1)和(2),我们可以得到如下表达式:
Z ( x , y ) = m a x [ z ( x , y ) , h ( x , y ) ] (3) Z(x,y)=max[z(x,y),h(x,y)]\tag{3} Z(x,y)=max[z(x,y),h(x,y)](3)
无人机在躲避障碍物的同时也会经常遇到具有威胁飞行安全的区域,我们称之为威胁区域。这些威胁区域可以是敌人的雷达和防空导弹系统的探测威胁区域也可以是一些其它的威胁,一旦无人机进入这些区域很有可能会被击落或者坠毁。为了简化模型,本文采用半径为 r 的圆柱形区域表示威胁区域,其半径的大小决定威胁区域的覆盖范围。每一个圆柱体的中心位置是对无人机构成最大威胁的地方并向外依次减弱。

3.无人机航迹规划建模

? 在环境建模的基础上,无人机航迹规划需要考虑到在执行复杂任务的过程中自身性能约束要求,合理的设计航迹评价函数才能使得群居蜘蛛搜索算法得出的最后结果符合要求,并保证规划出的航迹是有效的。考虑到实际环境中,无人机需要不断适应变化的环境。所以在无人机路径规划过程中,最优路径会显得比较复杂,并包含许多不同的特征。基于实际的情况,本文采用较为复杂的航迹评价函数进行无人机路径规划。影响无人机性能的指标主要包括航迹长度、飞行高度、最小步长、转角代价、最大爬升角等。

? 搜索最佳路径通常与搜索最短路径是密不可分的。在无人机航迹规划过程中,航迹的长度对于大多数航迹规划任务来说也是非常重要的。众所周知,较短的路线可以节省更多的燃料和更多的时间并且发现未知威胁的几率会更低。我们一般把路径定义为无人机从起始点到终点所飞行路程的值,设一条完整的航线有 n n n个节点,其中第 i i i个航路点和第 i + 1 i+1 i+1个航路点之间的距离表示为 l i l_i li ,这两个航路点的坐标分别表示为 ( x i , y i , z i ) (x_i,y_i,z_i ) (xi,yi,zi) ( x i + 1 , y i + 1 , z i + 1 ) (x_{i+1}, y_{i+1},z_{i+1}) (xi+1,yi+1,zi+1)并分别记作 g ( i ) g(i) g(i) g ( i + 1 ) g(i+1) g(i+1)。航迹需要满足如下条件:
{ l i = ∣ ∣ g ( i + 1 ) − g ( i ) ∣ ∣ 2 L p a t h = ∑ i = 1 n − 1 l i (4) \begin{cases} l_i = ||g(i+1)-g(i)||_2\\ L_{path}=\sum_{i=1}^{n-1}l_i \end{cases}\tag{4} {li=∣∣g(i+1)g(i)2Lpath=i=1n1li(4)
在飞行的过程中会遇到障碍物或者进入威胁区域,如果无人机无法躲避障碍物或者飞入了威胁区域将面临被击落或坠毁的危险以至于无法到达终点,记为 L p a t h = ∞ L_{path}=\infty Lpath=,但是无穷函数在实际问题中很难表示,我们采用惩罚的方式进行处理。一般情况下,为了利用地形覆盖自身位置,无人机应尽可能降低高度这可以帮助自身避免一些未知雷达等威胁。但是太低的飞行高度同样会加大无人机同山体和地面的撞击几率,因此设定稳定的飞行高度是非常重要的。飞行高度不应该有太大的变化,稳定的飞行高度可以减少控制系统的负担,节省更多的燃料 。为了使无人机飞行更加安全,给出的飞行高度模型:
{ h h e i g h t = 1 n ∑ i = 0 n − 1 ( z ( i ) − z ‾ ) 2 z ‾ = 1 n ∑ i = 0 n − 1 z ( i ) (5) \begin{cases} h_{height}=\sqrt{\frac{1}{n}\sum_{i=0}^{n-1}(z(i)-\overline{z})^2}\\ \overline{z}=\frac{1}{n}\sum_{i=0}^{n-1}z(i) \end{cases}\tag{5} {hheight=n1i=0n1(z(i)z)2 z=n1i=0n1z(i)(5)
无人机的可操作性也受到其转角代价函数的限制。,在飞行过程中无人机的转角应不大于其预先设定的最大转角,转角的大小会影响其飞行的稳定性。本文的研究中,设定最大转角为 Φ Φ Φ,当前转角为 θ \theta θ并且 a i a_i ai是第 i i i段航路段向量。
{ c o s θ = a i T a i + 1 ∣ a i ∣ ∣ a i + 1 ∣ J t u r n = ∑ i = 1 n ( c o s ( Φ − c o s θ ) ) (6) \begin{cases} cos\theta =\frac{a_i^Ta_{i+1}}{|a_i||a_{i+1}|}\\ J_{turn}=\sum_{i=1}^n(cos(\Phi-cos\theta)) \end{cases}\tag{6} {cosθ=ai∣∣ai+1aiTai+1Jturn=i=1n(cos(Φcosθ))(6)
其中, ∣ a ∣ |a| a代表矢量 a a a的长度。

? 通过对以上三个方面建立了无人机航迹规划的代价函数,可以得出本文的航迹评价函数如下:
J c o s t = w 1 L p a t h + w 2 h h e i g h t + w 3 J t u r n (7) J_{cost}=w_1L_{path}+w_2h_{height}+w_3J_{turn} \tag{7} Jcost=w1Lpath+w2hheight+w3Jturn(7)
其中, J c o s t J_{cost} Jcost是总的代价函数,参数 w i w_i wi i = 1 , 2 , 3 i=1,2,3 i=1,2,3 表示每个代价函数的权值,且满足如下条件:
{ w i ≥ 0 ∑ i = 1 3 w i = 1 (8) \begin{cases} w_i\geq0 \\ \sum_{i=1}^3 w_i=1 \end{cases} \tag{8} {wi0i=13wi=1(8)
通过对总的代价函数进行有效地处理,我们可以得到由线段组成的航迹。不可否认的是得到的路径往往是仅在理论上可行,但为了实际可飞,有必要对航迹进行平滑处理。本文采用三次样条插值的方法对路径进行平滑。

4.实验结果

4.1地图创建

设置地图参数a, b, c, d, e, f , g=1。地图大小为:200*200。设置三个山峰,山峰信息如表1所示。威胁区域信息如表2所示

表1:山峰信息
信息山峰中心坐标山峰高度山峰X方向坡度山峰y方向坡度
山峰1[60,60]502020
山峰2[100,100]603030
山峰3[150,150]802020
表2 威胁区域信息
信息威胁区域中心坐标威胁区域半径
威胁区域1[150,50]30
威胁区域2[50,150]20

创建的地图如下:

在这里插入图片描述

4.2 航迹规划

设置起点坐标为[0,0,20],终点坐标为[200,200,20]。利用群居蜘蛛算法对航迹评价函数式(7)进行优化。优化结果如下:

在这里插入图片描述
在这里插入图片描述

从结果来看,群居蜘蛛算法规划出了一条比较好的路径,表明算法具有一定的优势。

5.参考文献

[1]薛建凯. 一种新型的群智能优化技术的研究与应用[D].东华大学,2020.DOI:10.27012/d.cnki.gdhuu.2020.000178.

6.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/173336.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何使用 Docker 搭建 Jenkins 环境?从安装到精通

不少兄弟搭 jenkins 环境有问题,有的同学用 window, 有的同学用 mac, 有的同学用 linux。 还有的同学公司用 window, 家里用 mac,搭个环境头发掉了一地。。。 这回我们用 docker 去搭建 jenkins 环境,不管你是用的是什么系统&…

一文5000字从0到1使用Jmeter实现轻量级的接口自动化测试(图文并茂)

接口测试虽然作为版本的一环,但是也是有一套完整的体系,有接口的功能测试、性能测试、安全测试;同时,由于接口的特性,接口的自动化低成本高收益的,使用一些开源工具或一些轻量级的方法,在测试用…

【PointNet—论文笔记分享】

第一个直接基于原始点云数据进行分割、分类的模型,之前都是基于多视图或者体素的方式。 论文: PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation代码: TensorFlow版 Pytorch版 基本模型架构: 分别对每个点进行特征提取…

SpringBoot集成Redis Cluster集群(附带Linux部署Redis Cluster高可用集群)

目录 一、前言二、集成配置2.1、POM2.2、添加配置文件application.yml2.3、编写配置文件2.4、编写启动类2.5、编写测试类测试是否连接成功 一、前言 这里会使用到spring-boot-starter-data-redis包,spring boot 2的spring-boot-starter-data-redis中,默…

适用于物联网的UI设计工具都有哪些?

随着科学技术的飞速发展,“万物相连的互联网”时代逐渐成为现实。如今,物联网已经不是什么新词了。事实上,早在各种屏幕设备诞生之前,人们就与物理世界交织在一起,产生了无数的互动。如何将人们多年积累的互动经验与物…

windows下OOM排查

如下有一段代码 package com.lm.demo.arthas.controller;import org.springframework.web.bind.annotation.GetMapping; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RestController;import java.util.A…

PHP危险函数

PHP危险函数 文章目录 PHP危险函数PHP 代码执行函数eval 语句assert()语句preg_replace()函数正则表达式里修饰符 回调函数call_user_func()函数array_map()函数 OS命令执行函数system()函数exec()函数shell_exec()函数passthru() 函数popen 函数反引号 实列 通过构造函数可以执…

负载均衡的综合部署练习(hproxy+keepalived和lvs-DR+keepalived+nginx+Tomcat)

一、haproxykeepalived haproxy 2台 20.0.0.21 20.0.0.22 nginx 2台 20.0.0.23 20.0.0.24 客户机 1台 20.0.0.30 这里没有haproxy不是集群的概念,他只是代理服务器。 访问他直接可以直接访问后端服务器 关闭防火墙 安装haproxy和环境: yum in…

【Spring】快速入门Spring Web MVC

文章目录 1. 什么是Spring Web MVC1.1 MVC1.2 Spring MVC 2. 使用Spring MVC2.1 项目创建2.2 建立连接2.2.1 RequestMapping 注解2.2.2 RestController 注解2.2.3 RequestMapping 使⽤2.2.4 RequestMapping 是什么请求?POST?GET?…&#xff1…

Android原生项目集成uniMPSDK(Uniapp)遇到的报错总结

uni小程s序SDK 集成到Android原生项目:老项目中用到的库较多,会出现几种冲突问题,总结如下: 报错1: Execution failed for task :app:processDebugManifest. > Manifest merger failed with multiple errors, see logs Andro…

YUV的红蓝颠倒(反色)的原因及解决

原因 UV排列反了。 比如说,NV21和YUV420SP的Y排列相同,UV则相反。给你YUV420SP,你当作NV21保存JPG,就会发生红蓝拿起。 解决办法 就是把UV互换一下。具体代码: NV21转YUV420SP的代码_nv21转yuv420格式-CSDN博客 …

SpringCloud复习:(3)LoadBalancerInterceptor

使用Ribbon时,execute方法会由RibbonLoadBalancerClient类来实现 它会调用重载的execute方法 getLoadBalancer默认会返回ZoneAwareLoadBalancer(基类是BaseLoadBalancer).此处调用的getServer方法就会根据负载均衡策略选择适当的服务器来为下一步的htt…

算法通过村第十七关-贪心|白银笔记|贪心高频问题

文章目录 前言区间问题判断区间是否重复合并区间插入区间 字符串分割加油站问题总结 前言 提示:如果生活把你的门关上了,那你就再打开,这就是门,门就是这样的。 --佚名 贪婪的思想不一定要理解的很透彻,但是贪婪的问题…

苍穹外卖-day03

苍穹外卖-day03 课程内容 公共字段自动填充新增菜品菜品分页查询删除菜品修改菜品 **功能实现:**菜品管理 菜品管理效果图: 1. 公共字段自动填充 1.1 问题分析 在上一章节我们已经完成了后台系统的员工管理功能和菜品分类功能的开发,在…

成都无人机测绘公司 无人机测绘服务 无人机航测作业

无人机测绘是传统航空摄影测量方式的重要补充方式,它具有灵活、高效、适用范围广、生产周期短等优势,在小区域和飞行困难地区获取高分辨率图像具有明显的优势。目前,无人机测绘主要应用于土地监管、灾害应急处理、城市规划管理等方面。那么&a…

uniapp开发app,在ios真机上出现的css样式问题

比如下面的问题,在iphone 13上出现,在iphone xR上正常。 问题一:border:1rpx造成边框显示不全 在iphone13上border边框有一部分不显示: 在iphone xR上显示正常: 解决办法是: 将border边框设置中的1rpx改…

html2pdf

页面布局时将需要保存在同一页pdf的dom元素用div包裹,并为该div添加class类名,例如.convertPDF,如果有多页创建多个.convertPDF这个div,再循环保存pdf即可 用到了html2canvas和JsPdf这两个插件,自行站内搜索安装

drawio特性

drawio的特性 drawio是领先的基于Web技术的草图和图表功能功能的应用。 保证数据的安全 集成了各种不同的平台,和提供了在线的免费编辑器,可以使用app.diagrams.net来方案,drawio本身不会存储用户的数据。 随着互联网时代的发展&#xff0…

CVE-2021-44228 Apache log4j 远程命令执行漏洞

一、漏洞原理 log4j(log for java)是由Java编写的可靠、灵活的日志框架,是Apache旗下的一个开源项目,使用Log4j,我们更加方便的记录了日志信息,它不但能控制日志输出的目的地,也能控制日志输出的内容格式;…

走进国产机器人领军品牌华数机器人,共探数字化变革魔力

近日,纷享销客举办的“一院两司服务对接会暨走进纷享销客【数字化标杆】游学示范基地活动”在佛山顺利举行,本期活动走进华中数控旗下品牌、国家级专精特新“小巨人”企业华数机器人,特邀佛山华数机器人有限公司常务副总经理杨林、纷享销客广…